Answer:
Explanation:
The principle is that the slope of the line on a velocity-time graph reveals useful information about the acceleration of the object. If the acceleration is zero, then the slope is zero (i.e., a horizontal line). If the acceleration is positive, then the slope is positive (i.e., an upward sloping line).
A
longitudinal wave is a mechanical wave that causes the medium to vibrate
parallel to the direction of the wave. Its wave’s forces travel through
multiple rarefactions and compressions where compression is the closest
distance in the longitudinal wave and rarefaction is the farthest distance
apart in the said wave.
Answer:
Ek = 1705.28 [J]
Explanation:
In order to solve this problem, we must remember that kinetic energy can be calculated by means of the following equation.

where:
m = mass [kg]
v = velocity [m/s]
Ek = kinetic energy [J] (Units of Joules)
<u>For the person running</u>
<u />
<u />
<u />
<u>For the bullet</u>
<u />
<u />
<u />
<u />
<u />
The difference in Kinetic energy is equal to:
Ek = 2025 - 319.72
Ek = 1705.28 [J]
Answer:
7560 Joules
Explanation:
= Mass of first car = 
= Mass of second car = 
= Initial Velocity of first car = 0.3 m/s
= Initial Velocity of second car = -0.12 m/s
v = Velocity of combined mass
As linear momentum of the system is conserved

Energy lost is

The Energy lost in the collision is 7560 Joules
X-rays have shorter wavelength than visible light. But that's hardly the reason that they're used for medical imaging. xrays have much higher frequencies then visible light which means they have much greater penetrating ability. with xrays you can see inside the body. you can't do that with a visible flashlight no matter how bright and powerful it is.