Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x
The answer is C. F=ma basically says that force is a function of mass multiplied by acceleration. The first two answers don’t make sense because there’s no necessary relationship between mass and acceleration. And for the last two, the higher the mass, the higher the force needed, therefore C is the correct answer.
Answer:
<em>Total momentum is conserved</em>
Explanation:
<u>Conservation of Momentum
</u>
The momentum is a physical magnitude that measures the product of the object's velocity by its mass. The total momentum of a system is the sum of all its components' individual momentums. The two-bear system starts with a total moment of

When both bears stick together, the total mass is 20 kg, and the new momentum is

We have assumed both bears move to the right after the collision. In this situation, the total momentum is conserved
Answer:
Period for 1 revolution is 1.75 seconds
Explanation:
given data
revolutions R = 8
time t = 14 seconds
to find out
What is the period
solution
we know that Period is the time per revolution
so here period formula that is express as
period =
=
= 0.57 revolution in one second
so in 1 revolution =
seconds
so in 1 revolution = 1.75 seconds
so period for 1 revolution is 1.75 seconds