Answer:
In regards to the global energy budget, Earth absorbs <u>short-</u><u>wave</u> radiation and emits <u>long-</u><u>wave</u> radiation.
Explanation:
It is required to tell what kind of wave radiation the earth absorbs and emits in regards to the global energy budget.
Let us discuss the global energy budget first.
The balance between the solar energy that enters Earth and the energy that leaves Earth and travels back into space is known as the global energy budget or the earth's energy budget. The visible region of the electromagnetic spectrum is where the majority of the sun's energy is found.
Therefore earth absorbs <u>short-</u><u>wave</u> radiation and emits <u>long-</u><u>wave </u>radiation in regard to the global energy budget.
To know more about, the global energy budget, refer to:
brainly.com/question/4352906
#SPJ4
Answer:
In a two particle system, the center of mass lies on the center of the line joining the two particles.
The shape of a liquid can change because the atoms in it are not close together to form a solid, they flow freely.
Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:
