Answer:
C. 0.2 Hertz
Explanation:
The frequency of a spring is equal to the reciprocal of the period:

where
f is the frequency
T is the period
For the spring in this problem,
T = 5 s
therefore, the frequency is

Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
I believe it is call “Acceleration”
<h2>
The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.</h2>
Explanation:
Electric field is the ratio of force and charge.
Electric field, E = 280000 N/C
Charge, q = -7.9 C
We have

The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.