Answer:
0.181
Explanation:
We can convert the 0.5 rps into standard angular velocity unit rad/s knowing that each revolution is 2π:
ω = 0.5 rps = 0.5*2π = 3.14 rad/s
From here we can calculate the centripetal acceleration
Using Newton 2nd law we can calculate the centripetal force that pressing on the rider, as well as the reactive normal force:
Also the friction force and friction acceleration
For the rider to not slide down, friction acceleration must win over gravitational acceleration g = 9.81 m/s2:
'A' and 'C' are exactly the same circuit, except the voltmeter's terminals are flipped.
'A' is the correct way to hook everything up.
If you start at the positive terminal of the battery, and follow the flow of current through the circuit and around to the negative terminal, you're following the path where the voltage gets lower and lower and lower all the way.
So each time you come to any device in the circuit ... whether it's a resistor or a meter ... you would be hitting the positive side of it first, and then the voltage where you come out on the other side of it would be lower.
So the left side of the resistor is more positive, and the right side is more negative. The voltmeter is connected correctly in 'A', but it's backwards in 'C'. If you connect the voltmeter like in 'C' and turn things on, the voltmeter will try to go <em>down</em> from zero. You can't read the number on it, and It's possible that the voltmeter might be damaged.
This is <span>false. </span>Faraday's Law <span>predicts how a magnetic field interacts with an electric circuit, producing an EMF</span>
Answer:
0m
Explanation:
since the string is rigidly attached to the post, the reflected and incident pulses are of the same amplitude but different polarities. At the point where the two pulses meet, the amplitude will be the addition of that of the incident and the reflected pulses. i.e Amplitude= 0.25 + -0.25=0m
The question is poor.
It expects you to choose 'B', but things aren't nearly that simple.
We picture all of the asteroids bunched up in a neat bunch between
the orbits of Mars and Jupiter, with each asteroid following its own
nearly circular orbit. But many asteroids have wildly non-circular
'eccentric' orbits, sometimes being closer to the sun than the Earth is.
You know how you hear so much discussion about when did the Earth
get hit by an asteroid ? and when will the Earth be hit by another asteroid ?
and what will happen when the Earth is hit by an asteroid again ? None
of that would be possible if asteroids all had nearly circular orbits.
We picture comets as having these loooong skinny orbits, spending
most of every orbit waaay out in the solar system, and then dipping
close to the sun for a few days, and then going back waaaay out again.
But there are also many comets in nearly circular orbits around the sun.
You never hear anything about them, because you can never see them
without a powerful telescope, and they never do anything exciting.
So some comets could be a correct answer to this question too.
And since meteoroids are the remains of old comets, and follow the
orbit of the comet that they chipped off from, there are a lot of meteoroids
in circular orbits too, and they could also be a correct answer to this question.