Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




Answer
D. 0.25 meters/second2
Explanation
The average acceleration is the ratio of change in velocity to the change in time of travel.Taking in this case that the change of velocity is a unit, then Average acceleration is given by;
Aacc=Vf-Vi/Tf-Ti
where Vf=final velocity,Vi=initial velocity' Tf=final time, Ti=initial time
Vf-Vi=1m/s
Tf-Ti=4-0=4seconds
Avacc=1/4=0.25m/s2
The path the bowling ball would most closely follow after leaving the airplane is horizontal direction.
<h3>
Path of the bowling ball</h3>
Based on the law of inertia, which is the reluctance of an object to stop moving once in motion or start moving when it is at rest.
The bowling ball will maintain the path of the airline in the first few seconds of fall, after which it will change its path to vertical direction.
Thus, the path the bowling ball would most closely follow after leaving the airplane is horizontal direction.
Learn more about horizontal direction here: brainly.com/question/2534565
#SPJ1
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.
Answer:
convex lens
Explanation:
An image is form in retina with light rays converging most at cornea and upon entering and existing the lens.Rays from top and bottom of the object are traced and produce an inverted image on the retina