The overall molecule is Polar because the shape of the molecule is Trigonal Pyramidal, which means it has the lone pair electrons. Becuase of the lone pair the pulling is unequal.
H3O+ has 3 polar bonds.
To know if the bonds are polar or nonpolar find the difference of the element's electronegativity charge.
H has electronegativity charge of 2.2, and O has 3.4.
Always subtract the smaller number from the greater one.
So 3.4 - 2.2 = 1.2
If the difference is from 0-0.4 the bond is nonpolar, but if it's from 0.5-1.9 the bond is polar.
So, 1.2 is polar bond. So H3O+ has 3 polar bonds, and the overall molecule is polar too.
A simple way to know if it's polar or nonpolar is to draw the lewis dot structure, and use VSEPR.
If you mean hydrate as in <em>MgSO4 · 7H2O, </em>then simply find the molar mass of each element you see.
For the example above, that means you would add the molar mass (found on the periodic table) of Mg, then S, then 4(O), 14(H), and 7(O).
The results would be your molar mass for the hydrate.
I hope this is what you meant by your question!
Answer:
V = 48.64 L
Explanation:
Given data:
Mass of CO₂ = 85.63 g
Temperature = 273 K
Pressure = 1 atm
Volume of CO₂ = ?
Solution:
Number of moles of CO₂:
Number of moles = mass/molar mass
Number of moles = 85.63 g / 40 g/mol
Number of moles = 2.14 mol
Volume in Litter:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1 atm× V = 2.14 mol ×0.0821 atm.L/mol.K ×273 K
V = 48.64 atm.L / 1 atm
V = 48.64 L
Answer:
The answer to your question is: 0.1 M
Explanation:
data
Volume of AgNO3 = 20.00 ml
1000 ml -------------- 1 l
20 ml --------------- x
x = 20x 1 /1000 = 0.02
AgCl = 0.2867 g
MW of AgCl = 35.45 + 107.9 = 143.35 g
143.35 g -------------- 1 mol
0.2867 g ------------- x
x = 0.2867 x 1 / 143.35 = 0.002 moles of AgCl
From the balance reaction we see that the proportion of AgNO3 to AgCl is 1:1, then
1 mol of AgNO3 -------------------- 1 mol of AgCL
x --------------------- 0.002 moles of AgCl
x = 0.002 moles of AgNO3
This moles of AgNO3 are in 20 ml or 0.02 liters
So, Molarity = # moles/liter
Molarity = 0.002 moles/ 0.02 = 0.1 M