The cause would be how the idea started or developed and the effect would be how they both effected you together
distance from the Sun of 2.77 astronomical units or about 414 million km 257 million miles and orbiting period of 4.62 years
Answer: 2.94×10^8 J
Explanation:
Using the relation
T^2 = (4π^2/GMe) r^3
Where v= velocity
r = radius
T = period
Me = mass of earth= 6×10^24
G = gravitational constant= 6.67×10^-11
4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]
= 0.9865 x 10^-13
Therefore,
T^2 = (0.9865 × 10^-13) × r^3
r^3 = 1/(0.9865 × 10^-13) ×T^2
r^3 = (1.014 x 10^13) × T^2
To find r1 and r2
T1 = 120min = 120*60 = 7200s
T2 = 180min = 180*60= 10800s
Therefore,
r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m
r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m
Required Mechanical energy
= - GMem/2 [1/r2 - 1/r1]
= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]
= (2001 x 10^7)/2 * (0.1239 - 0.0945)
= (1000.5 × 10^7) × 0.0294
= 29.4147 × 10^7 J
= 2.94 x 10^8 J.
The pressure law states that pressure is directly proportional to temperature.
p=kt where p is pressure, k is a constant, and t is temperature.
p=kt -- substitute
50000=k*300000
k=1/6
p=1/6*360000
p=60000 -- in pa not kpa
The pressure is 60kpa