Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Answer:
A) False
B) False
C) True
D) False
Explanation:
A) False, because when leaving the field, the coil experiences a magnetic force to the right.
B) When the loop is entering the field, the magnetic flux through it will increase. Thus, induced magnetic field will try to decrease the magnetic flux i.e. the induced magnetic field will be opposite to the applied magnetic field. The applied magnetic field is into the plane of figure and thus the induced magnetic field is out of the plane of figure. Due to that reason, the current would be counterclockwise. So the statement is false.
C) When the loop is leaving the field, the magnetic flux through the loop will decrease. Thus, induced magnetic field will try to increase the magnetic flux i.e. the inducued magnetic field will be in the same direction as the applied magnetic field. The applied magnetic field is into the plane of figure and thus the induced magnetic field is also into the plane of figure. Due to that reason, the current would be clockwise. So the statement is true.
D) False because when entering the field magnetic force will be toward left side
Answer:
the correct answer is C, E’= 4E
Explanation:
In this exercise you are asked to calculate the electric field at a given point
E = 
indicates that the field is E for r = 2m
E =
(1)
the field is requested for a distance r = 1 m
E ’= k \frac{q}{r'^2}
E ’= k q / 1
from equation 1
4E = k q
we substitute
E’= 4E
so the correct answer is C
Explanation:
acceleration is weight*gravity
tension is the weight In Newtons
Answer: 0.00000938422m^3
Explanation:
dV=Vø*β*(t1-tø)
The parameters are
dV is the change in volume after temperature increase
Vø =0.607 *10^-3m3 is the initial vokume of coffe at 16.2^0 C
β= coefficient of volume expansion of water at 16.2^0 C is 0.0002/0C
t1= 93.5^0C final temperature
tø=16.2^0 C
Therefore
dV=0.607 *10^-3 *0.0002*(93.5-16.2)
dV= 0.00000938422m^3
This is the volume of coffee that will spill over the container