Answer:
The acceleration of the wagon is 3 m/s².
To calculate the acceleration of the wagon, we use the formula below.
Formula:
F = ma............. Equation 1
Where:
F = horizontal Force
m = mass of the wagon
a = acceleration of the wagon.
make a the subject of the equation
a = F/m.............. Equation 2
From the question,
Given:
F = 30 N
m = 10 kg
Substitute these values into equation 2
a = 30/10
a = 3 m/s²
Hence, the acceleration of the wagon is 3 m/s².
Kelvin is a base unit of temperature
scale from SI that defines as zero degree Kelvin (absolute zero). The absolute
zero is a hypothetical statement that all molecular movement stops because
there is no transient of energy for the molecules to move. When converting
temperature in degree Celsius to Kelvin, add 273. You are given 600K and you
are asked to find it in degrees Celsius.
T(K) = T(C) + 273
600 K = T(C) + 273
T(C) = 600 – 273
T(C) = 327 °C
<span>The answer is letter B.</span>
Newton's laws allow to find the result for the movement of the basketballl:
-
On the vertical axis the ball is on the ground.
- On the horizontal axis the ball is accelerating in the direction of the pushing force.
Newton's laws establish the relationship between the forces on objects:
- The 1st law states that if the net force is zero the object is stationary or with constant speed.
- The 2nd law gives a relation of the force with the mass and the acceleration of the body.
- The 3rd. Law states that the force appears in pairs, one on each body with the same magnitude, but in the opposite direction.
Let's apply these principles to the ball's motion diagram.
The two vertical forces are in the opposite direction, one is due to the weight of the body and the other is the attraction of the earth to the support of the ball, they are of equal magnitude, not their action-reaction force and reluctant because it is applied to the same body
In conclusion we can say that the ball is on the ground.
The two horizontal forces are in the opposite direction, the thrust force is greater than the friction therefore using Newton's second law the ball must be accelerating in the direction of the thrust force.
In conclusion we can say that the ball is accelerating in the direction of the pushing force.
In conclusion using Newton's laws we can find the result for the motion of the basketball:
-
On the vertical axis the ball is on the ground.
- On the horizontal axis the ball is accelerating in the direction of the pushing force.
Learn more about Newton's laws here: brainly.com/question/3715235
In physics, there are already derived equation that are based on Newton's Law of Motions. The rectilinear motions at constant acceleration have the following equations:
x = v₁t + 1/2 at²
a = (v₂-v₁)/t
where
x is the distance travelled
v₁ is the initial velocity
v₂ is the final velocity
a is the acceleration
t is the time
Now, we solve first the second equation. Since it mentions that the car comes eventually to a stop, v₂ = 0. Then,
-5 = (0-v₁)/t
-5t = -v₁
v₁ = 5t
We use this new equation to substitute to the first one:
x = v₁t + 1/2 at²
15 = 5t(t) + 1/2(-5)t²
15 = 5t² - 5/2 t²
15 = 5/2 t²
5t² = 30
t² = 30/5 = 6
t = √6 = 2.45
Therefore, the time it took to travel 15 m at a deceleration of -5 m/s² is 2.45 seconds.
Answer:
63°
that's my answer
but then I am sorry if I'm wrong
Explanation:
90-27 = 63°