Answer:
E°= E°cathode- E° anode= 0.271-0.330= -0.59V
Explanation:
NB: the stoichiometry does not affect E°values,
And the more positive the E° values , the greater it's tendency to become spontaneous and hence irreversible, and the more negative the E° values the more likely to become less spontaneous and reversible, hence the above reaction is reversible
Nitrogen (N2) and hydrogen (H2) gases react to form ammonia, which requires -99.4 J/K of standard entropy (ΔS°).
What is standard entropy?
The difference between the total standard entropies of the reaction mixture and the summation of the standard entropies of the outputs is the standard entropy change. Each entropy in the balanced equation needs to be compounded by its coefficient, as shown by the letter "n."
Calculation:
Balancing the given reaction following-
1/2 N₂(g) + 3/2 H₂ (g)→ NH₃ (g)
ΔS° = [1 mol x S° (NH₃)g] - [1/2 mol x S° (N₂)g] - [3/2 mol x S°(H₂)g]
Here S° = standard entropy of the system
Insert into the aforementioned equation all the typical entropy values found in the literature:
ΔS° = [1 mol x 192.45 J/mol.K] - [1/2 mol x 191.61 J/mol.K] - [3/2 mol x 130.684 J/mol.K]
⇒ΔS° = - 99.4 J/K
Therefore, the standard entropy, ΔS° is -99.4 J/K.
Learn more about standard entropy here:
brainly.com/question/14356933
#SPJ4
From the information given:
- The volume of the graduated cylinder = 50.0 mL
- when a sterling silver pendant is added, the volume increases to = 61.3 mL
∴
The volume of the sterling silver pendant is:
= 61.3 mL - 50.0 mL
= 11.3 mL
Since, 1 mL = 1cm³
Then;
11.3 mL = 11.3 cm³
- the density of the sterling silver = 10.25 g/cm³
Using the relation for Density; i.e.


mass = 10.25 g/cm³× 11.3 cm³
mass of the sterling silver = 115.825 grams
Recall that sterling silver has:
- 92.5% silver and;
- 7.5% copper
∴
The mass of the copper contained in the sterling silver pendant can be calculated as:

= 8.687 grams
Therefore, we can conclude that the mass of the copper contained in the sterling silver pendant is 8.687 grams
Learn more about the relation between Density, Mass, and Volume here:
brainly.com/question/24386693?referrer=searchResults
The molecular formula of the compound that we are required to find is the compound C4H8O8
<h3>What is empirical formula?</h3>
The empirical formula of a compound is a formula that shows the ratio of each atom present in the compound. We will start by dividing each mass with the relative atomic mass of the atom.
Carbon - 48.38 g/12 Hydrogen - 6.74 g/1 Oxygen - 53.5 g/16
Carbon - 4 Hydrogen - 6.74 Oxygen - 8.9
Dividing through by the lowest ratio;
Carbon - 4/4 Hydrogen - 6.74/4 Oxygen 8.9/4
Carbon 1 Hydrogen 2 Oxygen 2
The empirical formula is CH2O2.
To obtain the molecular formula; brainly.com/question/11588623
[12 + 2 + 32]n = 180
n = 180/[12 + 2 + 32]
n =4
The compound C4H8O8
Learn more about empirical formula:
Let us differentiate accuracy from precision. Accuracy is the nearness of the measured value to the true or exact value. On the other hand, precision is the nearness of the measured values between each other. So, for precision, select the student in which the measured values are very near to each other. That would be Student III. Now, for accuracy, let's find the average for each student.
Student I: (<span>8.72g+8.74g+8.70g)/3 = 8.72 g
Student II: (</span><span>8.56g+8.77g+8.83g)/3 = 8.72 g
Student III: (</span><span>8.50g+8.48g+8.51g)/3 = 8.50 g
Student IV: (</span><span>8.41g+8.72g+8.55g)/3 = 8.56 g
From the given results, the accurate one would be Students I and II. So, we make a compromise. Even though Student III is precise, it is not accurate. If you compare between Students I and II, the more precise data would be Student I. Therefore, the answer is Student I.</span>