The dna is multiplied obviously
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

a) PE=mgh=0.2*9.8*1.2=2.352 J
b) KE=PE=2.352 J
c)
m/s
Answer:
The number of turns, N = 1750
Explanation:
It is given that,
The inner radius of a toroid, r = 12 cm
Outer radius, r' = 15 cm
The magnetic field at points within the coils 14 cm from its center is, 
R = 14 cm = 0.14 m
Current, I = 1.5 A
The formula for the magnetic field at some distance from its center is given by :



N = 1750
So, the number of turns must have in a toroidal solenoid is 1750. Hence, this is the required solution.