Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Answer: 5.36×10-3kg/h
Where 10-3 is 10 exponential 3 or 10 raised to the power of -3.
Explanation:using the formula
M =JAt = -DAt×Dc/Dx
Where D is change in the respective variables. Insulting the values we get,
=5.1 × 10-8 × 0.13 × 3600 × 2.9 × 0.31 / 4×10-3.
=5.36×10-3kg/h
Answer:
Detailed solution is given in the attached diagram
The impact behavior of plastic materials is strongly dependent upon the temperature. At high temperatures, materials are more ductile and have high impact toughness. At low temperatures, some plastics that would be ductile at room temperature become brittle.