Answer:
Đường dây siêu cao áp 500kV: Những chuyện giờ mới kể ... Ngày 27/5/1994, hệ thống đường dây điện siêu cao áp 500kV Bắc - Nam chính thức đưa ... Tại thời điểm đó, các nước như Pháp, Úc, Mỹ khi xây dựng đường dây dài nhất ... và chế ra các máy kéo dây theo đặc thù công việc của từng đơn vị.
Explanation:
Answer and Explanation:
The answer is attached below
Broken yellow b/c you can’t pass on a double solid yellow
Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.
Answer:
import pandas pd
def read_prices(tickers):
price_dict = {}
# Read ingthe ticker data for all the tickers
for ticker in tickers:
# Read data for one ticker using pandas.read_csv
# We assume no column names in csv file
ticker_data = pd.read_csv("./" + ticker + ".csv", names=['date', 'price', 'volume'])
# ticker_data is now a panda data frame
# Creating dictionary
# for the ticker
price_dict[ticker] = {}
for i in range(len(ticker_data)):
# Use pandas.iloc to access data
date = ticker_data.iloc[i]['date']
price = ticker_data.iloc[i]['price']
price_dict[ticker][date] = price
return price_dict