Answer is: the energy of exactly one photon of this light is 4.75·10⁻¹⁹ J.
Photon energy equation: E = h·ν.
E - energy of one photon.
ν- frequency.
h - Planck's constant.
ν = 7.17·10¹⁴ Hz.
h = 6.63·10⁻³⁴ J·s.
E = 6.63·10⁻³⁴ J·s · 7.17·10¹⁴ Hz.
E = 4.75·10⁻¹⁹ J.
Answer:
Option D. 30 g
Explanation:
The balanced equation for the reaction is given below:
2Na + S —> Na₂S
Next, we shall determine the masses of Na and S that reacted from the balanced equation. This is can be obtained as:
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of S = 32 g/mol
Mass of S from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Finally, we shall determine the mass sulphur, S needed to react with 43 g of sodium, Na. This can be obtained as follow:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Therefore, 43 g of Na will react with = (43 × 32)/46 = 30 g of S.
Thus, 30 g of S is needed for the reaction.
0 degree Celsius is equal to 272 k
So to convert C to k we need to add 273
To convert K to C we need to subtract 273
Answer:
Option A. 66 g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CH₄ + 2O₂ —> CO₂ + 2H₂O
Next, we shall determine the mass of CH₄ that reacted and the mass of CO₂ produced from the balanced equation. This is illustrated below:
Molar mass of CH₄ = 12 + (4×1)
= 12 + 4 = 16 g/mol
Mass of CH₄ from the balanced equation = 1 × 16 = 16 g
Molar mass of CO₂ = 12 + (16×2)
= 12 + 32 = 44 g/mol
Mass of CO₂ from the balanced equation = 1 × 44 = 44 g
SUMMARY:
From the balanced equation above,
16 g of CH₄ reacted to produce 44 g of CO₂.
Finally, we shall determine the theoretical yield of CO₂. this can be obtained as follow:
From the balanced equation above,
16 g of CH₄ reacted to produce 44 g of CO₂.
Therefore, 24 g of CH₄ will react to produce = (24 × 44) /16 = 66 g of CO₂.
Thus, the theoretical yield of CO₂ 66 g