Answer:
large supply of nutrients.
Explanation:
In a wetland, the soil is covered by water or is almost covered by water. This water may be coming upwards from an underground aquifer. Wetlands are covered by water for most of the year.
They are sheltered waters and do provide habitats for many living things.
Nutrients such as; Carbon sulfur, phosphorus, carbon, and nitrogen are cycled within the soil of wetlands hence wetlands have a large supply of nutrients.
a)
A: Copper
B: CuO
C: 
D: $\mathrm{CuCO_3}$
E: $\mathrm{CO_2}$
F: $\mathrm{Cu(NO_3)_2}$
b)
$\mathrm{CuO+ H_2SO_4}\rightarrow \mathrm{CuSO_4 + H_2O}$
c)
$\mathrm{CuCO_3+ 2HNO_3}\rightarrow \mathrm{Cu(NO_3)_2+ CO_2+ H_2O}$
Answer : 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Solution : Given,
Mass of Cu = 300 g
Molar mass of Cu = 63.546 g/mole
Molar mass of
= 183.511 g/mole
- First we have to calculate the moles of Cu.

The moles of Cu = 4.7209 moles
From the given chemical formula,
we conclude that the each mole of compound contain one mole of Cu.
So, The moles of Cu = Moles of
= 4.4209 moles
- Now we have to calculate the mass of
.
Mass of
= Moles of
× Molar mass of
= 4.4209 moles × 183.511 g/mole = 866.337 g
Mass of
= 866.337 g = 0.8663 Kg (1 Kg = 1000 g)
Therefore, 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.