Answer:
on the surface of the cathode
Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.
The question is asking us to determine what gives the Amethyst its purplish color. Amethyst colors range from light to dark purple. The most highly regarded are the transparent deep purple colors. Amethyst ( chemical formula: Si O2 ) is the purple variety of the mineral Quartz.The pure Quartz is often colorless. Amethyst gets its purplish color because of the presence of Iron ( Fe ) and other impurities in the gem. Answer: C. Iron.<span /><span />
Hey there!
<span>Use the equation of Clapeyron:
</span>
T in kelvin :
26 + 273.15 => 299.15 K
R = 0.082
V = 10.2 L
P = 0.98 atm
number of moles :
P *V = n * R * T
0.98 * 10.2 = n * 0.082 * 299.15
9.996 = n * 24.5303
n = 9.996 / 24.5303
n = 0.4074 moles
Therefore:
Molar mass H2O = 18.01 g/mol
1 mole H2O ------------- 18.01 g
0.4074 moles ----------- m
m = 0.4074 * 18.01 / 1
m = 7.339 g of H2O
Hey there!
Consider 100 g of solution:
Mass of NaCl = 3.50% of mass of seawater
( 3.50 / 100 ) * 100 => 3.50 g
Number of moles as shown below:
Molar mass NaCl = 58.44 g/mol
n = Mass / molar mass
n = 3.50 / 58.44 => 0.059 moles of NaCl
Mass of sweater:
Mass of solution - Mass of NaCl
100 - 3.50 = 96.5 g
96.5 g in Kg :
96.5 / 1000 => 0.0965 Kg
Therefore ,calculate molality by using the following formula:
molality = number of moles of solute / mass of solution
molality = 0.059 / 0.0965
molality = 0.61 m
Hope That helps!