Answer:
0.00011 JK.
The process does NOT violate the second law of thermodynamics
Explanation:
The following parameters are given which are going to help in solving for the change in entropy of the system. The term "entropy'' simply means the degree of disorderliness of a system.
=> The temperature of container A = 305 K, the temperature of container B = 295 K and the amount of heat generated when the containers are placed in contact with each other = 1. 1 J.
The change in entropy of the hot container = -(1/305) = - 0.00328 J/K.
The change in entropy of the cold container = 1/295 = 0.00339 J/K.
Therefore, the change in the entropy of the system = - 0.00328 J/K + 0.00339 J/K = 0.00011 JK.
Note that the change in entropy of the system gives a positive value. Hence, this process does not violate the second law of thermodynamics.
The process does NOT violate the second law of thermodynamics.
Answer:
Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration = 7.50 mg
Final concentration = 0.25 mg
Time = ?
Applying in the above equation, we get that:-
Heat Transfer Lab
The following represents a lab set up for heat transfer. The cup on the left started with boiling water at 100 degrees C and the cup on the right has water at 20 degrees C. There is an aluminum bar between the two cups allowing heat to transfer from one cup into the other. The set up will be left alone for 20 minutes and temperatures of each cup of water will be recorded every minute for 20 minutes.
mag-aral ka
Answer:
Is soft
Explanation:
because concrete is hard ash so t hink flour would be safer