Answer:The first task of a nuclear weapon design is to rapidly assemble a supercritical mass of fissile uranium or plutonium. A supercritical mass is one in which the percentage of fission-produced neutrons captured by another fissile nucleus is large enough that each fission event, on average, causes more than one additional fission event. Once the critical mass is assembled, at maximum density, a burst of neutrons is supplied to start as many chain reactions as possible. Early weapons used a modulated neutron generator codenamed "Urchin" inside the pit containing polonium-210 and beryllium separated by a thin barrier. Implosion of the pit crushed the neutron generator, mixing the two metals, thereby allowing alpha particles from the polonium to interact with beryllium to produce free neutrons. In modern weapons, the neutron generator is a high-voltage vacuum tube containing a particle accelerator which bombards a deuterium/tritium-metal hydride target with deuterium and tritium ions. The resulting small-scale fusion produces neutrons at a protected location outside the physics package, from which they penetrate the pit. This method allows better control of the timing of chain reaction initiation.
Explanation:
The best answer to your question would be B:those who could not be broken down by physical means.
I believe the answer is increases , decreases
Answer:
The distance from Earth to the sun is called an astronomical unit, or AU, which is used to measure distances throughout the solar system.
For a p type of semiconductor we need a dopant which is from 13th group in periodic table
Al , B, Ga, In Tl
So the correct element will be In : Indium
The other elements belongs to 15th group and hence will give n type semiconductor