Answer:
Explanation:
21. Atoms are not created or destroyed means that atoms that you begin with are the atoms that you will end with. The catch is that the atoms will rearrange to give you new compounds, but the atoms that you initially had are the atoms you will still have after reaction. For eg, if you started with eggs and made omelet. Omelet is a "new" compound, but the atoms that were in the eggs have rearranged to become the omelet so can you see that atoms were not created or destroyed to make the omelet.
22. Yes because amount of products you make depends on how much reactants you have. For eg, I need two graham cracker(GC), one marshmallow(M), and one chocolate (C) to make a s'more. If I get more of each item then I can make more s'mores and consequently having minimum amounts results in less s'mores that I make.
23. Not possible, due to law of conservation of matter and energy. Atoms cannot be created nor be destroyed, they are simply rearranged. For eg, Taking A + B cannot give you a new compound with a chemical formula D or XZ. A + B can however give you AB which is rearrangement of the starting atoms.
24. Chemical equation is balanced when atoms on reactant side and atoms of product side are in equal counts. I have attached a graphic below for more help.
Answer:
D (The last answer)
Explanation:
In a transverse wave, particles oscillate perpendicular to the direction of wave motion.
In a longitudinal wave, the oscillations of particles are parallel to the direction of propagation.
"cg" is centigram, which is one-hundredth of a gram.
I will first convert from g to cg (multiply by 100), then from mL to L (multiply by 1000).

Answer:
13500 N
Explanation:
According to newtons second law of motion
mass m =1500 Kg
a = 9m/s^2
Force F = mass m × acceleration a
F = 1500×9= 13500 N
Answer: The answer is an ionic bond