Answer:
q = 7.4 10⁻¹⁰ C
Explanation:
a) The magnetic force is given by the expression
F = q v x B
Where the blacks indicate vectors, q is the electric charge, v at particle velocity and B the magnitude of the magnetic field. If the velocity is perpendicular to the magnetic field, the sine is 1
F = q v B
Let's calculate the charge
q = F / vB
q = 1.00 10⁻¹² / 30.0 B
For the magnetic field of the earth we have a value between 25μT and 65μT, an intermediate value would be 45 μT, let's use this value.
q = 1 10⁻¹² / (30 45 10⁻⁶)
q = 7.4 10⁻¹⁰ C
b) In laboratories and modern electronics, currents of up to 1 10⁻⁶ A can be achieved without much difficulty, in advanced and research laboratories currents of up to 1 10⁻¹² can be managed. Load values (coulomb) cannot they are widely used today for work, but 1 mA = 3.6C, so we see that getting loads with the value of 10⁻¹⁰ C implies very small current less than 1 10⁻¹³ A, which only in laboratories of Very specialized can be created. Consequently, from the above it would be difficult to find loads lower than the calculated
The electrostatic charge is the one created by the friction between two surfaces, it is an indicated charge, in this case it would be possible to have better wing loads found from 10⁻¹⁰C
<span>Niche - </span><span>An organism's particular role in an ecosystem, or how it makes its living.</span>
Bromine has 7 electrons in their valence shell.......
As stated, the impulse and momentum definitions will be used to later find the value of time through the force of gravity. According to the theory, the impulse formula is given as,

Here,
F = Force
Change in time
Now using the impulse theorem we have that,
Change in Impulse = Change in momentum
(1)
The change in momentum is given as



The force due to gravity is through the Newton's second law

Here,
m = mass
g = Acceleration due to gravity
Substitute the value in (1)




Therefore it will take 0.51s.
Answer:
6000 kilometers
Explanation:
multiply the length value by 1000