Using the theorem of kinetic energy
1/2mVf² - 1/2mVi²= WF + Wp, Wp=0
WF = F. AB, AB=5m and F= 40N, m=20kg
so the final kinetic is KEf= 1/2mVf² = WF =<span>F. AB= 40*5=200J
</span>
the final velocity is 1/2mVf² <span>=200, implies Vf= sqrt(20)=2sqrt(5)m/s</span>
Answer:
The force is 
The time is 
Explanation:
From the question we are told that
The mass of the car is 
The initial velocity of the car is 
The final velocity of the car is 
The acceleration is 
Generally the acceleration is mathematically represented as

=> 
=> 
converting to seconds

=> 
Generally the force is mathematically represented as

=> 
=> 
Now converting to foot-pound-second we have

=> 
formula for wavelength = speed/frequency
So 1500/200 = 7.5 meters
Answer:
Fx= 50.0 Pounds : Components of the force along the x-axis
Fy= 86.6 Pounds : Component of the force along the y-axis
Explanation:
Conceptual Analysis
To find the components (Fx, Fy) of the total force (F), we apply the trigonometric concepts for a right triangle, where the perpendicular sides of the triangle are the components (Fx, Fy) of the force (F), the hypotenuse (h) is the magnitude of the total force F and β is the angle that forms the horizontal component with the hypotenuse.
Formulas
cos β : x/h : x: side adjacent to the β angle h: hypotenuse (1)
sin β = y/h : y: side opposite to the β angle h: hypotenuse (2)
Known Data
Known data
F= 1.00 * 10² pounds = 100 pounds : magnitude of total force
β = 60.0° to the x-axis. : Angle that forms the force with the x-axis
Problem Development
We apply the formula 1 to calculate horizontal component (Fx)
cos β :Fx/F
Fx= F cosβ = 100*cos 60° = 50.0 Pounds
We apply the formula 2 to calculate vertical component (Fy)
sin β = Fy/F
Fy= F sinβ = 100*sin 60° = 86.6 Pounds