1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
14

A wagon is pulled at a speed of 0.40metets/seconds by a horse exerting an 1,800 Newton's horizontal force. what is the power of

this horse?
Physics
1 answer:
Tatiana [17]3 years ago
6 0

Given:

speed of 0.40meters/seconds

1,800 Newton's horizontal force

Required:

Power of the horse

Solution:

P = F(D/T) where P is power in watts, F is the force, D is the distance and T is time

P = (1,800N) (0.40 meters/seconds)

P = 720 Watts

You might be interested in
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
Study the scenario.
Otrada [13]

If no other forces act on the object, according to Newton’s first law, the spacecraft will continue moving at a constant velocity, assuming that a planet or something with large mass doesn’t cross its path. Forces are not required to continue the motion of an object on a frictionless plane at a constant rate.

7 0
3 years ago
Read 2 more answers
On the moon, the acceleration due to gravity is one-sixth that of earth. That is gmoon = gearth /6 = (9.8 m/s2 )/6 = 1.63 m/s2 .
MAVERICK [17]
The pendulum would differ from 300 inches
8 0
3 years ago
A 0.2 kg block sliding on a horizontal table slows down from 25 m/s to 20 m/s. How much energy does the block lose due to fricti
Papessa [141]

Answer:

the kinetic energy lost due to friction is 22.5 J

Explanation:

Given;

mass of the block, m = 0.2 kg

initial velocity of the block, u = 25 m/s

final velocity of the block, v = 20 m/s

The kinetic energy lost due to friction is calculated as;

\Delta K.E= K.E_f - K.E_i\\\\\Delta K.E= \frac{1}{2}mv^2 -  \frac{1}{2}mu^2\\\\\Delta K.E= \frac{1}{2}m(v^2 -u^2)\\\\\Delta K.E= \frac{1}{2} \times 0.2 (20^2 - 25^2)\\\\\Delta K.E= -22.5 \ J

Therefore, the kinetic energy lost due to friction is 22.5 J

7 0
3 years ago
Read 2 more answers
How can an animal regeneration produce two results?
GenaCL600 [577]
In biology, regeneration<span> refers to the process by which plants and </span>animals<span> replace lost or damaged parts by growing them anew. Some </span>animals can regenerate<span> their limbs, tails, or even parts of internal organs, such as the liver. In plant </span>regeneration<span>, neighboring cells replace missing tissue.</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Explain.
    9·1 answer
  • Two loudspeakers are placed on a wall 2 m apart. A listener stands directly in front of one of the speakers, 81.7 m from the wal
    6·1 answer
  • Which statement correctly describes the motion on which an Earth time interval is based?
    9·1 answer
  • How long does it take a car traveling at 50.7 mi/hr to travel to 655 miles?
    8·2 answers
  • What is the formula for calculating the net force of an object
    10·1 answer
  • The acceleration of an object would increase if there was an increase in the
    15·1 answer
  • Would a vibrating proton produce an electromagnetic wave
    11·1 answer
  • A sinusoidal wave is traveling on a string with speed 19.3 cm/s. The displacement of the particles of the string at x = 6.0 cm i
    11·1 answer
  • What is energy and types of energy<br>​
    6·2 answers
  • The position of an object that is oscillating on a spring is given by the equation x = (17.4 cm) cos[(5.46 s-1)t]. what is the a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!