The sum total<span> of the genetically based </span>variety<span> of </span>living organisms<span> in the </span>biosphere<span> is called a. species diversity. c. biodiversity.</span>
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.
Molar mass NaCl = 58 g
Mass of solute = 29 g
number of moles: mass of solute / molar mass
n = 29 / 58
n = 0.5 moles
hope this helps!
Answer:
Explanation:
Natural Rain:
"Normal" rainfall is slightly acidic because of the presence of dissolved carbonic acid. ... The gases of sulfur oxides and nitrogen oxides are chemically converted into sulfuric and nitric acids. The non-metal oxide gases react with water to produce acids (ammonia produces a base).Natural Rain:
"Normal" rainfall is slightly acidic because of the presence of dissolved carbonic acid. ... The gases of sulfur oxides and nitrogen oxides are chemically converted into sulfuric and nitric acids. The non-metal oxide gases react with water to produce acids (ammonia produces a base).
Explanation:
- It is known that the amount of heat necessary to raise the temperature of 1 gram of a substance by
is known as specific heat.
Since, q = 
So, larger is the specific heat of a substance less will be the change in its temperature.
Therefore, olive oil has less specific heat as compared to water. This means that olive oil would get hotter.
- Similarly, the specific heat of gold is lesser than the given materials or metals. Hence, gold will requires less heat to rise its temperature.
As a result, water present in gold will heat readily.
- As the relation between heat and specific heat is as follows.
q = 
Therefore, calculate the amount of heat required by the water as follows.
q = 
= 
= 33440 J
or, = 33.44 kJ (as 1 kJ = 1000 J)
Thus, 33.44 kJ heat would it take to raise the temperature of 100.0 g of water from
to
.