Answer:
-1
Step-by-step explanation:
Answer:
9
Step-by-step explanation:
they said that m=6 which you can plug in into the problem, now that you know what 'm' is. It will look like this:
6/2 + 6 = ?
6 divided by 2 = 3 so it'll look like this
3 + 6 = 9
Answer:

Step-by-step explanation:
Let assume that Earth is a sphere, the following trigonometric diagram is constructed and presented below. The central angle is given by this inverse trigonometric equation:



The distance of the portion of Earth that can be seen is:


We have been given that the distribution of the number of daily requests is bell-shaped and has a mean of 38 and a standard deviation of 6. We are asked to find the approximate percentage of lightbulb replacement requests numbering between 38 and 56.
First of all, we will find z-score corresponding to 38 and 56.


Now we will find z-score corresponding to 56.

We know that according to Empirical rule approximately 68% data lies with-in standard deviation of mean, approximately 95% data lies within 2 standard deviation of mean and approximately 99.7% data lies within 3 standard deviation of mean that is
.
We can see that data point 38 is at mean as it's z-score is 0 and z-score of 56 is 3. This means that 56 is 3 standard deviation above mean.
We know that mean is at center of normal distribution curve. So to find percentage of data points 3 SD above mean, we will divide 99.7% by 2.

Therefore, approximately
of lightbulb replacement requests numbering between 38 and 56.
Answer:
H0 : μ = 0.5
H0 : μ > 0.5
Kindly check explanation
Step-by-step explanation:
H0 : μ = 0.5
H0 : μ > 0.5
We perform a right tailed test :
Sample proportion :
Number of games won, x = 142
Number of games, n = 250
phat = x / n = 142 / 250 = 0.568 = 56.8%
Yes, it is consistent
Test statistic :
(phat - p) * √Phat(1-Phat)/n
1 -Phat = 1 -0.568 = 0.432
(0.568 - 0.5) /√(0.568*0.432)/250
0.068 / 0.0313289
= 2.17
The Pvalue using the z test statistic :
Pvalue = 0.015
α = 0.03
Since ;
Pvalue < α ; We reject the null and conclude that teams tend to win more often when they play at home.