The people of Finland, who are secluded to some degree from the rest of the world by water, develop certain diseases due to the lack of genetic material from other ethnicities and races.
Physical barriers prevent fish from one stream from mating with fish from another stream, leading to a less varied gene pool among those fish. As time passes, the fish become unable to successfully mate with other groups.
A mountain range prevents two types of goat from mating, causing the gene pool to become less varied.<span>
</span>
Answer:
The answer to your question is letter B. 9
Explanation:
Unbalanced reaction
Al₂(SO₄)₃ + Ca(OH)₂ ⇒ Al(OH)₃ + CaSO₄
Reactants Elements Products
2 Al 1
3 S 1
14 O 7
1 Ca 1
2 H 3
Balanced reaction
Al₂(SO₄)₃ + 3Ca(OH)₂ ⇒ 2Al(OH)₃ + 3CaSO₄
Reactants Elements Products
2 Al 2
3 S 3
18 O 18
3 Ca 3
6 H 6
The sum of the coefficients is 1 + 3+ 2+ 3 = 9
There is no specific name for a glacier that break off as an iceberg. However, the part of the glacier in which this happens is called the "zone of wastage". Chunks break off in a process called "calving".
First, we have to remember the molarity formula:

Part 1:
In this case, our solute is sodium nitrate (NaNO3), and we have the mass dissolved in water, then we have to convert grams to moles. For that, we need the molecular weight:

Then, we calculate the moles present in the solution:

Now, we have the necessary data to calculate the molarity (with the solution volume of 200 mL):

The molarity of this solution equals 0.2339 M.
Part 2:
In this case, we have the same amount (in moles and mass) of sodium nitrate, but a different volume of solution, then we only have to change it:

So, the molarity of this solution is 0.1701 M.
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s