Answer:
The correct answer is AMP+H2O→ Adenosine + pi
Explanation:
The above reaction is least energetic because there is no phosphoanhydride bond present with adenosine mono phosphate.Phospho anhydride bond is an energy rich bond.
As a result hydrolysis of AMP generates very little amount of energy in comparison to the hydrolysis of ATP and ADP.
the greatest amount of work is required if the process is adiabatic.The correct option is adiabatic.
The process in which heat is constant is called adiabatic process.
The The process in which temperature is constant is called isothermal process.
The process in which pressure is constant is called isobaric process.
The P-V diagram for adiabatic , isothermal and isobaric process is given below.
Work done in process = area encloses by P-V diagram axis . Since area under the curve is maximum for adiabatic process which is shown in the above diagram. So, work done by the gas will be maximum for adiabatic process.
learn more about adiabatic process.
brainly.com/question/17192213
#SPJ4
Answer:
infrared for longer and ultraviolet for shorter
Explanation:
let me now if right
Answer:
Option C :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
Explanation:
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
Tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
For Example
C₂H₆O₂ Consist of Carbon (C), Hydrogen (H), and Oxygen (O)
Now
Look at the ratio of these three atoms in the compound
C : H : O
2 : 6 : 2
Divide the ratio by two to get simplest ratio
C : H : O
2/2 : 6/2 : 2/2
1 : 3 : 1
So for the empirical formula the simplest ratio of carbon to hydrogen to oxygen is 1:3:1
So the empirical formula will be
Empirical formula of C₂H₆O₂ = CH₃O
So, Option C is correct :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
The periodic table is arranged in a way so that with each step the number of protons in the nucleus is increased by 1. It makes it for an easy choice to designate elements with numbers - atomic numbers, because in that case atomic number shows the number of protons possessed by the nucleus. Like this:
H has 1 proton
He has 2 protons
Li has 3 protons
Be has 4 protons and so on
Each proton has a charge of +1. The other particle present in the nucleus - the neutron - has zero electrical charge and thus irrelevant when computing the charge of a nucleus. It is easy to deduce that the nucleus charge equals the number of protons (which in turn equals the atomic number). So the nucleus charges are:
for H it's+1
for He it's +2
for Li it's +3
for Be it's +4 and so on
Atom is an electroneutral particle by definition. It means it's summed charge must be 0. Since we've looked at everything within the nucleus (the protons and the neutrons) it's time we turn our gaze to the space around it, which is full of orbiting electrons. Each electron has a charge of -1. To make up for the positive charge in the nucleus you have to fill the space aroung the nucleus with negative electrons.Thanks to the elementary nature of both proton and electron charge, you simply have to take the same number of electrons as that of protons! Like this:
H has 1 proton and 1 electron
He has 2 protons and 2 electrons
Li has 3 protons and 3 electrons
Be has 4 protons and 4 electrons and so on
Fe has atomic number 26. It means that Fe has 26 protons and 26 electrons. If it's a neutral atom
You typed 3. Is it accidental? If so, then the answer is above. If not, then you could be trying to type 56Fe +3, which means an ionic iron with charge +3. Charges are formed when you have too many or too few electrons to counter-balance the prositive charge of the nucleus. Charge +3 means you're 3 electrons short to negate the nucleus positive charge.
In other words, Fe+3 has 26 protons and 23 electrons.