1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
9

Does jupiter have a permanent storm thats looks like a large red spot?

Engineering
1 answer:
alekssr [168]3 years ago
8 0
Yes it does have a large spot
You might be interested in
Two common methods of improving fuel efficiency of a vehicle are to reduce the drag coefficient and the frontal area of the vehi
qaws [65]

Answer:

\Delta V = 209.151\,L, \Delta C = 217.517\,USD

Explanation:

The drag force is equal to:

F_{D} = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot A

Where C_{D} is the drag coefficient and A is the frontal area, respectively. The work loss due to drag forces is:

W = F_{D}\cdot \Delta s

The reduction on amount of fuel is associated with the reduction in work loss:

\Delta W = (F_{D,1} - F_{D,2})\cdot \Delta s

Where F_{D,1} and F_{D,2} are the original and the reduced frontal areas, respectively.

\Delta W = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot (A_{1}-A_{2})\cdot \Delta s

The change is work loss in a year is:

\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)

\Delta W = 2.043\times 10^{9}\,J

\Delta W = 2.043\times 10^{6}\,kJ

The change in chemical energy from gasoline is:

\Delta E = \frac{\Delta W}{\eta}

\Delta E = \frac{2.043\times 10^{6}\,kJ}{0.3}

\Delta E = 6.81\times 10^{6}\,kJ

The changes in gasoline consumption is:

\Delta m = \frac{\Delta E}{L_{c}}

\Delta m = \frac{6.81\times 10^{6}\,kJ}{44000\,\frac{kJ}{kg} }

\Delta m = 154.772\,kg

\Delta V = \frac{154.772\,kg}{0.74\,\frac{kg}{L} }

\Delta V = 209.151\,L

Lastly, the money saved is:

\Delta C = \left(\frac{154.772\,kg}{0.74\,\frac{kg}{L} }\right)\cdot (1.04\,\frac{USD}{L} )

\Delta C = 217.517\,USD

4 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
Outline the structure of an input-output model (including assumptions about supply and demand). What is an inverse matrix? Why i
pishuonlain [190]

Answer:

Explanation:

C.1 Input-Output Model

It is a formal model that divides the economy into 2 sectors and traces the flow of inter-industry purchases and sales. This model was developed by Wassily Leontief in 1951. In simpler terms, the inter-industry model is a quantitative economic model that defines how the output of one industry becomes the input of another industrial sector. It is an interdependent economic model where the output of one becomes the input of another. For Eg: The Agriculture sector produces output using the inputs from the manufacturing sector.

The 3 main elements are:

Concentrates on an economy which is in equilibrium

Deals with technical aspects of production

Based on empirical investigations and assumptions

Assumptions

2 sectors - " Inter industry sector" and "final sector"

Output of one industry is the input for another

No 2 goods are produced jointly. i.e each industry produces homogenous goods

Prices, factor suppliers and consumer demands are given

No external economies or diseconomies of production

Constant returns to scale

The combinations of inputs are employed in rigidly fixed proportions.

Structure of IO model

See image 1

Quadrant 1: Flow of products which are both produced and consumed in the process of production

Quadrant 2: Final demand for products of each producing industry.

Quadrant 3: Primary inputs to industries (raw materials)

Quadrant 4: Primary inputs to direct consumption (Eg: electricity)

The model can be used in the analysis of the labor market, forecast economic development of a nation and analyze economic developments of various regions.

Leontief inverse matrix shows the output rises in each sector due to a unit increase in final demand. Inverting the matrix is significant since it is a linear system of equations with unique solutions. Thus, the final demand vector for the required output can be found.

C.2 Linear programming problems

Linear programming problems are optimization problems in which objective function and the constraints are all linear. It is most useful in making the best use of scarce resources during complex decision makings.

Primal LP, Dual LP, and Interpretations

Primal linear programming: They can be viewed as a resource allocation model that seeks to maximize revenue under limited resources. Every linear program has associated with it a related linear program called dual program. The original problem in relation to its dual is termed as a primal problem. The objective function is a linear combination of n variables. There are m constraints that place an upper bound on a linear combination of the n variables The goal is to maximize the value of objective functions that are subject to the constraints. If the primal linear programming has finite optimal value, then the dual has finite optimal value, and the primal and dual have the same optimal value. If the optimal solution to the primal problem makes a constraint into a strict inequality, it implies that the corresponding dual variable must be 0. The revenue-maximizing problem is an example of a primal problem.

Dual Linear Programming: They represent the worth per unit of resource. The objective function is a linear combination of m values that are the limits in the m constraints from the primal problem. There are n dual constraints that place a lower bound on a linear combination of m dual variables. The optimal dual solution implies fair prices for associated resources. Stri=ong duality implies the Company’s maximum revenue from selling furniture = Entrepreneur’s minimum cost of purchasing resources, i.e company makes no profit. Cost minimizing problem is an example of dual problems

See image 2

n - economic activities

m - resources

cj - revenue per unit of activity j

4 0
3 years ago
Read 2 more answers
Determine how much concrete you will need for a slab which is 50 feet by 30 feet wide and 1 foot thick
Levart [38]

Answer:

Amount of concrete need to make slab = 1,500 feet³

Explanation:

Given:

Length of slab = 50 feet

Width of slab = 30 feet

Height of slab = 1 feet

Find:

Amount of concrete need to make slab

Computation;

Amount of concrete need to make slab = Volume of cuboid

Volume of cuboid = (l)(b)(h)

Amount of concrete need to make slab = (50)(30)(1)

Amount of concrete need to make slab = 1,500 feet³

6 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Other questions:
  • Match the description with the term. I need help
    7·1 answer
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    15·1 answer
  • Which of the following elements of the CIA triad refers to maintaining and assuring the accuracy of data over its life-cycle?
    7·1 answer
  • Assignment 1: Structural Design of Rectangular Reinforced Concrete Beams for Bending
    6·1 answer
  • What are the two most important things to remember when at the end of your interview?
    6·1 answer
  • A thermoelectric refrigerator is powered by a 16-V power supply that draws 2.9 A of current. If the refrigerator cools down 3.1
    11·1 answer
  • The part of a circuit that carries the flow of electrons is referred to as the?
    11·1 answer
  • Examples of reciprocating motion in daily life
    14·1 answer
  • Water from an upper tank is drained into a lower tank through a 5 cm diameter iron pipe with roughness 2 mm. The entrance to the
    11·1 answer
  • The controller determines if a(n) _________ exists by calculating the difference between the SP and the PV.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!