Answer:
Fleming hand rule represents the direction of current in a generator's windings and induced current as a conductor is attached to a circuit such that it moves in a magnetic field.
Explanation:
Fleming hand rule represents the direction of current in a generator's windings and induced current as a conductor is attached to a circuit such that it moves in a magnetic field.
Fleming hand rule is used in the case of electric motors and electric generators.
Fleming hand rule is used to determine the following:
1. Direction of torque
2. Angular velocity
3. Angular acceleration
Lo siento, no sé qué estás diciendo.
Answer:Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process
Explanation:
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
<u></u>
has greater effect.
<u>Explanation</u>:

= Temperature of cold reservoir
= Temperature of hot reservoir
when
is decreased by 't',
= 

when
is increased by 'T'

