1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
2 years ago
13

Which types of numbers does scientific notation best describe?

Physics
1 answer:
Travka [436]2 years ago
4 0
The correct answer is
<span>c) very small and very large

Let's see this with a few examples:
1) if we have a very small number, such as
</span>0.0000000001
<span>we see that we can write it easily by using the scientific notation:
</span>1\cdot 10^{-10}
<span>2) Similarly, if we have a very large number:
</span>10000000000
<span>we see that we can write it easily by using again the scientific notation:
</span>1 \cdot 10^{10}<span>
</span>
You might be interested in
You drop a steel ball bearing, with a radius of 2.40 mm, into a beaker of honey. Note that honey has a viscosity of 6.00 Pa/s an
Stells [14]

Answer:

The “terminal speed” of the ball bearing is 5.609 m/s

Explanation:

Radius of the steel ball R = 2.40 mm

Viscosity of honey η = 6.0 Pa/s

\text { Viscosity has Density } \sigma=1360 \mathrm{kg} / \mathrm{m}^{3}

\text { Steel has a density } \rho=7800 \mathrm{kg} / \mathrm{m}^{3}

\left.\mathrm{g}=9.8 \mathrm{m} / \mathrm{s}^{2} \text { (g is referred to as the acceleration of gravity. Its value is } 9.8 \mathrm{m} / \mathrm{s}^{2} \text { on Earth }\right)

While calculating the terminal speed in liquids where density is high the stokes law is used for viscous force and buoyant force is taken into consideration for effective weight of the object. So the expression for terminal speed (Vt)

V_{t}=\frac{2 \mathrm{R}^{2}(\rho-\sigma) \mathrm{g}}{9 \eta}

Substitute the given values to find "terminal speed"

\mathrm{V}_{\mathrm{t}}=\frac{2 \times 0.0024^{2}(7800-1360) 9.8}{9 \times 6}

\mathrm{V}_{\mathrm{t}}=\frac{0.0048 \times 6440 \times 9.8}{54}

\mathrm{V}_{\mathrm{t}}=\frac{302.9376}{54}

\mathrm{V}_{\mathrm{t}}=5.609 \mathrm{m} / \mathrm{s}

The “terminal speed” of the ball bearing is 5.609 m/s

7 0
3 years ago
An electron is emmited by an atomic nucleus in the process of...
Sliva [168]
I’m pretty sure it’s Radioactive decay
8 0
3 years ago
Read 2 more answers
A car drives at steady speed around a perfectly circular track.
gayaneshka [121]

Answer:

e. Both the acceleration and net force on the car point inward.

Explanation:

If no net force acts on the car, the car must drive in a straight line, at constant speed.

As the acceleration is defined as the rate of change of the velocity vector, this means that it can produce either a change in the magnitude of the velocity (the speed) or in the direction.

In order to the car can follow a circular trajectory, it must be subjected to an acceleration, that must go inward, trying to take the car towards the center of the circle.

The net force that causes this acceleration, aims inward, and is called the centripetal force.

It is not a different type of force, it can be a friction force, a tension force, a normal force, etc., as needed.

6 0
3 years ago
Water (density = 1x10^3 kg/m^3) flows at 15.5 m/s through a pipe with radius 0.040 m. The pipe goes up to the second floor of th
RUDIKE [14]

Answer:

The speed of the water flow in the pipe on the second floor is approximately 13.1 meters per second.

Explanation:

By assuming that fluid is incompressible and there are no heat and work interaction through the line of current corresponding to the pipe, we can calculate the speed of the water floor in the pipe on the second floor by Bernoulli's Principle, whose model is:

P_{1} + \frac{\rho\cdot v_{1}^{2}}{2}+\rho\cdot g\cdot z_{1} = P_{2} + \frac{\rho\cdot v_{2}^{2}}{2}+\rho\cdot g\cdot z_{2} (1)

Where:

P_{1}, P_{2} - Pressures of the water on the first and second floors, measured in pascals.

\rho - Density of water, measured in kilograms per cubic meter.

v_{1}, v_{2} - Speed of the water on the first and second floors, measured in meters per second.

z_{1}, z_{2} - Heights of the water on the first and second floors, measured in meters.

Now we clear the final speed of the water flow:

\frac{\rho\cdot v_{2}^{2}}{2} = P_{1}-P_{2}+\rho \cdot \left[\frac{v_{1}^{2}}{2}+g\cdot (z_{1}-z_{2}) \right]

\rho\cdot v_{2}^{2} = 2\cdot (P_{1}-P_{2})+\rho\cdot [v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2})]

v_{2}^{2}= \frac{2\cdot (P_{1}-P_{2})}{\rho}+v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2})

v_{2} = \sqrt{\frac{2\cdot (P_{1}-P_{2})}{\rho}+v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2}) } (2)

If we know that P_{1}-P_{2} = 0\,Pa, \rho=1000\,\frac{kg}{m^{3}}, v_{1} = 15.5\,\frac{m}{s}, g = 9.807\,\frac{m}{s^{2}} and z_{1}-z_{2} = -3.5\,m, then the speed of the water flow in the pipe on the second floor is:

v_{2}=\sqrt{\left(15.5\,\frac{m}{s} \right)^{2}+2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (-3.5\,m)}

v_{2} \approx 13.100\,\frac{m}{s}

The speed of the water flow in the pipe on the second floor is approximately 13.1 meters per second.

4 0
2 years ago
Which of the following natural factors is likely to support the formation of an oceanic island?
stepan [7]
The natural factor that is most likely to support the formation of an oceanic island is the rise of magma from the seafloor. Oceanic islands are also otherwise known as volcanic islands. When volcanoes erupt, they create layers of lava that break the surface of the water. When the tops of the volcanoes emerge, an island is created.<span> </span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • Can been seen but not projected?
    6·1 answer
  • Problem: Suppose that the rate of flow of water through a fire hose is 21.4 kg/s and the stream of water from the hose moves at
    9·2 answers
  • Which name is given to the type of friction that objects falling through air experience?
    10·2 answers
  • The following picture displays a map of potential difference (vertical axis) for an unknown configuration of charges as a functi
    10·1 answer
  • You throw a glove straight upward to celebrate a victory. Its initial kinetic energy is K and it reaches a maximum height h. Wha
    10·1 answer
  • A charge of 28 nC is placed in a uniform electric field that is directed vertically upward and that has a magnitude of 4 x 104 N
    12·1 answer
  • Newtons third law says that if Robert exerts a _______ of 1000 Newtons on an object, it will exert an equal and opposite _______
    6·1 answer
  • Which statements are true about moving the compass around the wire
    12·1 answer
  • Why are road accidents at high speeds very much worse than road accidents at low speeds?
    7·2 answers
  • Match each word to it's correct meaning.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!