The speed of the wave with the given frequency and wavelength is 1.2m/s.
Given the data in the question;
- Wavelength of the wave;

- Frequency;

- Speed of the wave;

<h3>
Wavelength</h3>
Wavelength is the distance over which the shapes of waves are repeated. It is the spatial period of a periodic wave.
It is expressed as;

Where v is velocity/speed and f is frequency.
Now, we can easily get the speed of the wave by substituting our given values into the expression above.

Therefore, the speed of the wave with the given frequency and wavelength is 1.2m/s.
Learn more about Speed, Frequency and Wavelength here: brainly.com/question/27120701
This question involves the concepts of tension, weight, and centripetal force.
The maximum speed, the mass can have before the string breaks is "10.26 m/s".
First, we will find the maximum tension force:
Tension = Weight
T = W = mg = (32.4 kg)(9.81 m/s²)
T = 317.84 N
Now, this tension force must be equal to the centripetal force:

where,
v = maximum speed = ?
r = radius = 1.21 m
m = mass = 3.65 kg
Therefore,

<u>v = 10.26 m/s</u>
Learn more about centripetal force here:
brainly.com/question/11324711?referrer=searchResults
The attached picture shows the centripetal force.
Answer:
a) A = 4.0 m
, b) w = 3.0 rad / s
, c) f = 0.477 Hz
, d) T = 20.94 s
Explanation:
The equation that describes the oscillatory motion is
x = A cos (wt + fi)
In the exercise we are told that the expression is
x = 4.0 cos (3.0 t + 0.10)
let's answer the different questions
a) the amplitude is
A = 4.0 m
b) the frequency or angular velocity
w = 3.0 rad / s
c) angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 3 / 2π
f = 0.477 Hz
d) the period
frequency and period are related
T = 1 / f
T = 1 / 0.477
T = 20.94 s
e) the phase constant
Ф = 0.10 rad
f) velocity is defined by
v = dx / dt
v = - A w sin (wt + Ф)
speed is maximum when sine is + -1
v = A w
v = 4 3
v = 12 m / s
g) the angular velocity is
w² = k / m
k = m w²
k = 1.2 3²
k = 10.8 N / m
h) the total energy of the oscillator is
Em = ½ k A²
Em = ½ 10.8 4²
Em = 43.2 J
i) the potential energy is
Ke = ½ k x²
for t = 0 x = 4 cos (0 + 0.1)
x = 3.98 m
j) kinetic energy
K = ½ m v²
for t = 00.1
²
v = A w sin 0.10
v = 4 3 sin 0.10
v = 1.98 m / s
Answer:
Explanation:
This problem is related to vertical motion, and the equation that models it is:
(1)
Where:
is the rock's final height
is the rock's initial height
is the rock's initial velocity
is the angle at which the rock was thrown (directly upwards)
is the time
is the acceleration due gravity in Planet X
Isolating
and taking into account
:
(2)
(3)
(4) This is the acceleration due gravity in Planet X
Answer:
The internet is most useful to them because they use it to communicate.
Explanation:
If I were to send a message to my brother in Florida, through the internet, while I'm in Pennsylvania he would get it in minutes. On the other hand if I were going to meet him and then explain what I wanted to tell him in person it would take a much longer time.