I do believe all of these but core elements can be determined by spectroscopy which includes the use of electromagnetic radiation. Both the surface and core temperature can be measured using light. Surface elements can be found because the absorption lines of different elements in the spectra of the star, but I haven't heard anything about using spectral analysis for core elements.
Magma forms by partial melting of upper mantle and crust. Partial melt means that only a fraction of the available material forms a melt, and that the remainder stays solid. The partial melt rises because of its lower density and ascends through he crust.
516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473
Decomposing - When plants and animals die, they decompose. This process uses up oxygen and releases carbon dioxide. Rusting - This is also called oxidation. When things rust they use up oxygen.
Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m