Answer:
He becomes a croco-dile food
Explanation:
From the question we are told that
The height is h = 2.0 m
The angle is
The distance is ![w = 10m](https://tex.z-dn.net/?f=w%20%3D%2010m)
The speed is ![u = 11 m/s](https://tex.z-dn.net/?f=u%20%3D%2011%20m%2Fs)
The coefficient of static friction is ![\mu = 0.02](https://tex.z-dn.net/?f=%5Cmu%20%3D%200.02)
At equilibrium the forces acting on the motorcycle are mathematically represented as
![ma = mgsin \theta + F_f](https://tex.z-dn.net/?f=ma%20%3D%20mgsin%20%5Ctheta%20%20%2B%20F_f)
where
is the frictional force mathematically represented as
where
is the horizontal component of the force
substituting into the equation
![ma = mgsin \theta + \mu mg cos \theta](https://tex.z-dn.net/?f=ma%20%3D%20mgsin%20%5Ctheta%20%20%2B%20%5Cmu%20mg%20cos%20%5Ctheta)
![ma =mg (sin \theta + \mu cos \theta )](https://tex.z-dn.net/?f=ma%20%20%3Dmg%20%28sin%20%5Ctheta%20%20%2B%20%5Cmu%20cos%20%5Ctheta%20%29)
making a the subject of the formula
![a = g(sin \theta = \mu cos \theta )](https://tex.z-dn.net/?f=a%20%3D%20g%28sin%20%5Ctheta%20%3D%20%5Cmu%20cos%20%5Ctheta%20%29)
substituting values
![a = 9.8 (sin(20) + (0.02 ) cos (20 ))](https://tex.z-dn.net/?f=a%20%3D%209.8%20%28sin%2820%29%20%2B%20%280.02%20%29%20cos%20%2820%20%29%29)
![= 3.54 m/s^2](https://tex.z-dn.net/?f=%3D%203.54%20m%2Fs%5E2)
Applying " SOHCAHTOA" rule we mathematically evaluate that length of the ramp as
![sin \theta = \frac{h}{l}](https://tex.z-dn.net/?f=sin%20%5Ctheta%20%3D%20%5Cfrac%7Bh%7D%7Bl%7D)
making
the subject
![l = \frac{h}{sin \theta }](https://tex.z-dn.net/?f=l%20%3D%20%5Cfrac%7Bh%7D%7Bsin%20%5Ctheta%20%7D)
substituting values
![l = \frac{2}{sin (20)}](https://tex.z-dn.net/?f=l%20%3D%20%5Cfrac%7B2%7D%7Bsin%20%2820%29%7D)
![l = 5.85m](https://tex.z-dn.net/?f=l%20%3D%205.85m)
Apply Newton equation of motion we can mathematically evaluate the final velocity at the end of the ramp as
![v^2 =u^2 + 2 (-a)l](https://tex.z-dn.net/?f=v%5E2%20%3Du%5E2%20%2B%202%20%28-a%29l)
The negative a means it is moving against gravity
substituting values
![v^2 = (11)^2 - 2(3.54) (5.85)](https://tex.z-dn.net/?f=v%5E2%20%3D%20%2811%29%5E2%20-%202%283.54%29%20%285.85%29)
![v= \sqrt{79.582}](https://tex.z-dn.net/?f=v%3D%20%5Csqrt%7B79.582%7D)
![= 8.92m/s](https://tex.z-dn.net/?f=%3D%208.92m%2Fs)
The initial velocity at the beginning of the pool (end of ramp) is composed of two component which is
Initial velocity along the x-axis which is mathematically evaluated as
![v_x = vcos 20^o](https://tex.z-dn.net/?f=v_x%20%3D%20vcos%2020%5Eo)
substituting values
![v_x = 8.92 * cos (20)](https://tex.z-dn.net/?f=v_x%20%3D%208.92%20%2A%20cos%20%2820%29)
![= 8.38 m/s](https://tex.z-dn.net/?f=%3D%208.38%20m%2Fs)
Initial velocity along the y-axis which is mathematically evaluated as
![v_y = vsin\theta](https://tex.z-dn.net/?f=v_y%20%3D%20vsin%5Ctheta)
substituting values
![v_y = 8.90 sin (20)](https://tex.z-dn.net/?f=v_y%20%3D%208.90%20sin%20%2820%29)
![= 3.05 m/s](https://tex.z-dn.net/?f=%3D%203.05%20m%2Fs)
Now the motion through the pool in the vertical direction can mathematically modeled as
![y = y_o + u_yt + \frac{1}{2} a_y t^2](https://tex.z-dn.net/?f=y%20%3D%20y_o%20%2B%20%20u_yt%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20a_y%20t%5E2)
where
is the initial height,
is the initial velocity in the y-axis
is the initial acceleration in the y axis with a constant value of (
)
at the y= 0 which is when the height above ground is zero
Substituting values
![0 = 2 + (3.05)t - 0.5 (9.8)t^2](https://tex.z-dn.net/?f=0%20%3D%202%20%2B%20%283.05%29t%20-%200.5%20%289.8%29t%5E2)
The negative sign is because the acceleration is moving against the motion
![-(4.9)t^2 + (2.79)t + 2m = 0](https://tex.z-dn.net/?f=-%284.9%29t%5E2%20%2B%20%282.79%29t%20%2B%202m%20%3D%200)
Solving using quadratic formula
![\frac{-b \pm \sqrt{b^2 -4ac} }{2a}](https://tex.z-dn.net/?f=%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2%20-4ac%7D%20%7D%7B2a%7D)
substituting values
![\frac{-3.05 \pm \sqrt{(3.05)^2 - 4(-4.9) * 2} }{2 *( -4.9)}](https://tex.z-dn.net/?f=%5Cfrac%7B-3.05%20%5Cpm%20%5Csqrt%7B%283.05%29%5E2%20-%204%28-4.9%29%20%2A%202%7D%20%7D%7B2%20%2A%28%20-4.9%29%7D)
![t = \frac{-3.05 + 6.9}{-9.8} \ or t = \frac{-3.05 - 6.9}{-9.8}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B-3.05%20%2B%206.9%7D%7B-9.8%7D%20%20%20%5C%20or%20t%20%3D%20%5Cfrac%7B-3.05%20-%206.9%7D%7B-9.8%7D)
![t = -0.39s \ or \ t = 1.02s](https://tex.z-dn.net/?f=t%20%3D%20-0.39s%20%20%5C%20or%20%20%5C%20t%20%3D%201.02s)
since in this case time cannot be negative
![t = 1.02s](https://tex.z-dn.net/?f=t%20%3D%201.02s)
At this time the position the motorcycle along the x-axis is mathematically evaluated as
![x = u_x t](https://tex.z-dn.net/?f=x%20%3D%20u_x%20t)
x ![=8.38 *1.02](https://tex.z-dn.net/?f=%3D8.38%20%2A1.02)
![x =8.54m](https://tex.z-dn.net/?f=x%20%3D8.54m)
So from this value we can see that the motorcycle would not cross the pool as the position is less that the length of the pool