Answer:
, downward
Explanation:
There is only one force acting on the ball during its motion: the force of gravity, which is given by

where
m is the mass of the ball
is the acceleration of gravity (downward)
According to Newton's second law,

where F is the net force on the object and a is its acceleration. Rearranging for a,

As we said, the only force acting on the ball is gravity, so F = mg and the acceleration of the ball is:

Therefore, the ball has a constant acceleration of
downward for the entire motion.
Answer:
A) Gravitational Force is greater in S.
B) Time taken to fall a given distance in air will be greater for F.
C) Both will take same time to fall in a vacuum.
D) Total force is greater in S.
Explanation:
(a) In this case, the gravitational force of S will be greater, because Newton's Second Law states that - F = ma, or weight =mg. g is constant. And mass of the solid metal is heavier.
(b) In this case, the time it will take for F to fall from a given distance in air will be greater than that of S, since the air resistance is not negligible (as in the case of S).
(c) In this, It will take same time for S and F because in a vacuum, there are no air particles, so there is no air resistance and gravity is the only force acting and so objects fall at the same rate in a vacuum.
(d) The total force will be greater in S than F because Force=ma and S is of heavier mass than F.
Answer:
y = 33.93 10⁵ m
Explanation:
This is an interference exercise, for the contributory interference is described by the expression
d sin θ = m λ
let's use trigonometry for the angle
tan θ = y / L
how the angles are small
tan θ = sin θ / cos tea = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
the light fulfills the relation of the waves
c = λ f
λ = c / f
λ = 3 10⁸ /375
λ = 8 10⁵ m
first order m = 1
let's calculate
y = 1 8 10⁵ 4030 10-9 / 950 10-9
y = 33.93 10⁵ m
Answer:
Gravity provides a downward force, resulting in the diver going downward. They speed up like any falling object would, the pull of gravity is a dominant force. (There is a drag force – as a result of moving through the air.)