Answer:

Explanation:
At
, the heat of vaporization of water is given by:

The water here condenses and gives off heat given by the product between its mass and the heat of vaporization:

The block of aluminum absorbs heat given by the product of its specific heat capacity, mass and the change in temperature:

According to the law of energy conservation, the heat lost is equal to the heat gained:
or:

Rearrange for the final temperature:

We obtain:

Then:

Chemical equilibrium<span> is the state in which both reactants and products are present in concentrations which have no further tendency to change with time.
</span><span>Or, we can say that in chemical equilibrium the ratio between the concentration of the reactants and the products is constant.</span><span>
Chemical equilibrium is a result state when </span><span>the forward reaction proceeds at the same rate as the reverse reaction.
</span><span>Different reactions have different equilibrium.</span>
Answer:
sorry
Explanation:
I don't know the answer this is really confusing but I am really sorry you have to do this.
A. Fe2O3 + 3CO= 2Fe+3CO2
Here element oxidised is CO or Carbon Monoxide, since oxygen is added.
B. 2HCl+2KMnO4+3H2C2O4=6CO2+2MnO2+2KCl+4H2O
Here Element reduced is 3H2C2O4, since Hydrogen is being added. Also KMnO4 is reduced, since Oxygen is removed.
We know that the element Z = 119 would be placed right below the Fr, in the column of the alcaline metals.
We also know that the trend in the electronegativity is to decrease when you go up-down ia group.
The known electronegativities of the elements of this group are:
Li: 0.98
Na: 0.93
K: 0.82
Rb: 0.82
Cs: 0.79
Fr: 0.70
Then the hypotetical element Z = 119 would probably have an electronegativity slightly below 0.70, for sure in the range 0.60 - 0.70.