1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
3 years ago
11

Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o

nly information on each sample's label is the material's coefficient of absorption. The coefficient of absorption listed on Sample A is 30%, on Sample B is 47%, and on Sample C is 62%. When your boss asks for your choice and the reasoning behind it, what would you tell him?
A. Sample A would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
B. Sample A would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the largest.
C. Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
D. Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the largest.
Physics
2 answers:
earnstyle [38]3 years ago
4 0

The correct answer is Option C) Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.


As the coefficient of absorption would define the energy present in the reflected wave, the material C has the highest percentage of absorption i.e. 62% and would be best suitable to make a sound proof room.

Alex_Xolod [135]3 years ago
4 0

Answer: Option C: Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.

Explanation:

The absorption coefficient of the samples is given. Sample A has 30%, Sample B has 47% and Sample C has 62%. This means that sample C absorbs the most percentage of energy incident on it. The energy in the reflected wave would be least. Hence, it would be best to use for a room to make it soundproof.


You might be interested in
A series AC circuit contains a resistor, an inductor of 150 mH, a capacitor of 5.00 mF, and a generator with DVmax 5 240 V opera
yanalaym [24]

Given:

Inductance, L = 150 mH

Capacitance, C = 5.00 mF

\Delta V_{max} = 240 V

frequency, f = 50Hz

I_{max} = 100 mA

Solution:

To calculate the parameters of the given circuit series RLC circuit:

angular frequency, \omega =  2\pi f = 2\pi \times50 = 100\pi

a). Inductive reactance,  X_{L} is given by:

\X_{L} = \omega L = 100\pi \times 150\times 10^{-3} = 47.12\Omega

X_{L} = 47.12\Omega 

b). The capacitive reactance,  X_{C} is given by:

\X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 50\times 5.00\times 10^{-3}} = 0.636\Omega

X_{C} = 0.636\Omega

c). Impedance, Z = \frac{\Delta V_{max}}{I_{max}} = \frac{240}{100\times 10^{-3}} = 2400\Omega

Z = 2400\Omega

d). Resistance, R is given by:

Z = \sqrt {R^{2} + (X_{L} - X_{C})}

2400^{2} = R^{2} + (47.12 - 0.636)^{2}

R = \sqrt {5757839.238}

R = 2399.5\Omega

e). Phase angle between current and the generator voltage is given by:

tan\phi = \frac{X_{L} - X_{C}}{R}

\phi =tan^{-1}( \frac{X_{L} - X_{C}}{R})

\phi =tan^{-1}( \frac{47.12 - 0.636}{2399.5}) = tan^{-1}{0.0.01937}

\phi = 1.11^{\circ}

5 0
4 years ago
Consider the train car described in the previous part. Another experiment is conducted in it: A net force of 20N is applied to a
nordsb [41]

Answer:

No

Explanation:

The supplied information about the object and train is incomplete. Acceleration is the rate at which the velocity of a body changes with time. Here the velocity and time is not given

7 0
3 years ago
A highway patrol car traveling a constant speed of 105 km/h is passed by a speeding car traveling 140 km/h. Exactly 1.00 s after
vodka [1.7K]

Answer:

The elapsed time from when the speeder passes the patrol car until it is caught is 9.24 s.

Explanation:

Hi there!

The position of the patrol car at a time "t" can be calculated using this equation:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the patrol car at a time "t"

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

For the speeding car, the equation is the same only that the acceleration is zero. Then, the equation gets reduced to this:

x = x0 + v · t

Where "v" is the constant velocity.

First, let´s convert the velocity units into m/s:

140 km/h · 1000 m / 1 km · 1 h / 3600 s = 38.9 m/s

105 km/h · 1000 m / 1 km · 1 h / 3600 s = 29.2 m/s

We have to find how much time it takes the patrol car to catch the speeder after the speeder passes the patrol car.

When the patrol car catches the speeder, the position of both cars is the same:

position of the patrol car = position of the speeder

x0 + v0 · t + 1/2 · a · t² = x0 + v · t

if we place the origin of the frame of reference at the point where the patrol car starts accelerating (1 s after the speeder passes the patrol car) then, the initial position of the patrol car will be zero, while the initial position of the speeder will be the traveled distance in 1 s:

x = v · t

x = 38.9 m/s · 1 s = 38.9 m

When the patrol car accelerates, the speeder is 38.9 m ahead of it. Then:

x0 + v0 · t + 1/2 · a · t² = x0 + v · t

0 + 29.2 m/s · t + 1/2 · 3.50 m/s² · t² = 38.9 m + 38.9 m/s · t

Let´s agrupate terms and equalize to zero:

-38.9 m - 38.9 m/s · t + 29.2 m/s · t + 1.75 m/s² · t² = 0

-38.9 m - 9.70 m/s · t + 1.75 m/s² · t² = 0

Solving the quadratic equation for t using the quadratic formula:

t = 8.24 s  (the other solution is discarded because it is negative)

The elapsed time from when the speeder passes the patrol car until it is caught is (8.24 s + 1.00) 9.24 s.

3 0
3 years ago
A place kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. half the crowd hopes the ball will clear
trapecia [35]
<span>The ball clears by 11.79 meters Let's first determine the horizontal and vertical velocities of the ball. h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s Now determine how many seconds it will take for the ball to get to the goal. t = 36.0 m / 15.04 m/s = 2.394 s The height the ball will be at time T is h = vT - 1/2 A T^2 where h = height of ball v = initial vertical velocity T = time A = acceleration due to gravity So plugging into the formula the known values h = vT - 1/2 A T^2 h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2 h = 42.92 m - 4.9 m/s^2 * 5.731 s^2 h = 42.92 m - 28.0819 m h = 14.84 m Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
4 0
4 years ago
A ball of mass m, attached to the end of a horizontal cord, is rotated in a circle of radius r on a frictionless horizontal surf
kirza4 [7]

Answer:v=\sqrt{\frac{FL}{m}}

Explanation:

Given

Ball of mass m

maximum Bearable Tension in string is F

Let length of the cord be L m and moving at a speed of v m/s

Here Tension will Provide Centripetal Force

T=Centripetal Force

F=T=\frac{mv^2}{L}

v=\sqrt{\frac{FL}{m}}

8 0
3 years ago
Other questions:
  • Hi! Can you help me? :) A satellite's speed is 10,000 m/s. After 1 min, it is 5,000 m/s. What is the satellite's acceleration? T
    11·2 answers
  • Find the velocity at which the bowling ball must move for its kinetic energy to be equal to that of the meteorite.
    13·1 answer
  • A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1.4 ft/s,
    9·1 answer
  • What is machine. what is mechanica advantage​
    5·2 answers
  • Which rock is made mostly of dark, fine-grained silicate minerals, chiefly plagioclase feldspar and pyroxene, and magnetite?
    5·1 answer
  • Whate type of wave is made up of a sine wave plus all of its odd harmonics?
    7·1 answer
  • You are standing in front of a flat large mirror. As you step 1.0 m farther from the mirror, the distance between you and your i
    10·1 answer
  • RUE or FALSE: Red hair and freckles is a helpful (good) mutation.
    13·1 answer
  • An arrow of mass 20 g is shot horizontally into a bale of hay, striking the hay with a velocity of 60 m/s. It penetrates a depth
    14·1 answer
  • ? Any idea on this I’m getting some mixed up
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!