Wearing rubber or stay away from water or/ and a conductor
Answer:
I = 0.09[amp] or 90 [milliamps]
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is equal to the product of the voltage by the current.
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
Now, we replace the values of the first current into the equation
V = 180*10^-3 * R
V = 0.18*R (1)
Then we have that the resistance is doubled so we have this new equation:
V = I*(2R) (2)
The voltage remains constant therefore 1 and 2 are equals and we can obtain the current value.
V = V
0.18*R = I*2*R
I = 0.09[amp] or 90 [milliamps]
To solve this problem, we should recall the law of
conservation of energy. That is, the heat lost by the aluminium must be equal
to the heat gained by the cold water. This is expressed in change in enthalpies
therefore:
- ΔH aluminium = ΔH water
where ΔH = m Cp (T2 – T1)
The negative sign simply means heat is lost. Therefore we
calculate for the mass of water (m):
- 0.5 (900) (20 – 200) = m (4186) (20 – 0)
m = 0.9675 kg
Using same mass of water and initial temperature, the final
temperature T of a 1.0 kg aluminium block is:
- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)
- 900 T + 180,000 = 4050 T
4950 T = 180,000
T = 36.36°C
The final temperature of the water and block is 36.36°C
Answer:
Explanation:
Learn vocabulary, terms, and more with flashcards, games, and other study tools. ... A jogger sprints 100 m in 13 seconds. What is her average speed? 7.7 m/s ... Kathryn swam 5 complete laps of a 50 m pool. ... stands still for 4 seconds, then continues to walk for 8 meters moving away from the starting point in 6 seconds.
The characteristics of the velocity vector used to find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Newton's Second Law establishes a relationship between force, mass and acceleration of bodies.
<h3>Centripetal acceleration.
</h3>
In the case of circular motion there is a constant change in the direction of the velocity vector, even when its module remains constant, this change in direction points towards the center of the circle, so that the module is constant.
They indicate that the satellite is moving counterclockwise, therefore the speed must go to the left (counterclockwise) tangential to the circle.
In conclusion using the characteristics of the velocity vector we can find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Learn more about centripetal acceleration here: brainly.com/question/25243603