Answer:
Check the explanation
Explanation:
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
The image is virtual
The image is upright
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
Kindly check the diagram in the attached image below.
A) ![5.0\cdot 10^{-11} m](https://tex.z-dn.net/?f=5.0%5Ccdot%2010%5E%7B-11%7D%20m)
The energy of an x-ray photon used for single dental x-rays is
![E=25 keV = 25,000 eV \cdot (1.6\cdot 10^{-19} J/eV)=4\cdot 10^{-15} J](https://tex.z-dn.net/?f=E%3D25%20keV%20%3D%2025%2C000%20eV%20%5Ccdot%20%281.6%5Ccdot%2010%5E%7B-19%7D%20J%2FeV%29%3D4%5Ccdot%2010%5E%7B-15%7D%20J)
The energy of a photon is related to its wavelength by the equation
![E=\frac{hc}{\lambda}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7Bhc%7D%7B%5Clambda%7D)
where
is the Planck constant
is the speed of light
is the wavelength
Re-arranging the equation for the wavelength, we find
![\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4\cdot 10^{-15}J}=5.0\cdot 10^{-11} m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7Bhc%7D%7BE%7D%3D%5Cfrac%7B%286.63%5Ccdot%2010%5E%7B-34%7D%20Js%29%283%5Ccdot%2010%5E8%20m%2Fs%29%7D%7B4%5Ccdot%2010%5E%7B-15%7DJ%7D%3D5.0%5Ccdot%2010%5E%7B-11%7D%20m)
B) ![2.0\cdot 10^{-11} m](https://tex.z-dn.net/?f=2.0%5Ccdot%2010%5E%7B-11%7D%20m)
The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is
![E=2.5 \cdot (4\cdot 10^{-15}J)=1\cdot 10^{-14} J](https://tex.z-dn.net/?f=E%3D2.5%20%5Ccdot%20%284%5Ccdot%2010%5E%7B-15%7DJ%29%3D1%5Ccdot%2010%5E%7B-14%7D%20J)
And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:
![\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1\cdot 10^{-14}J}=2.0\cdot 10^{-11} m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7Bhc%7D%7BE%7D%3D%5Cfrac%7B%286.63%5Ccdot%2010%5E%7B-34%7D%20Js%29%283%5Ccdot%2010%5E8%20m%2Fs%29%7D%7B1%5Ccdot%2010%5E%7B-14%7DJ%7D%3D2.0%5Ccdot%2010%5E%7B-11%7D%20m)
Answer:
t = 27.5
Explanation:
![3 + 5 -220t = 0](https://tex.z-dn.net/?f=3%20%2B%205%20-220t%20%3D%200)
Well to solve for t we need to combine like terms and seperate t.
So 3+5= 8
8 - 220t = 0
We do +220 to both sides
8 = 220t
And now we divide 220 by 8 which is 27.5
Hence, t = 27.5
I’m pretty sure it’s circuit three.
Answer:
The distance is 11 m.
Explanation:
Given that,
Friction coefficient = 0.24
Time = 3.0 s
Initial velocity = 0
We need to calculate the acceleration
Using newton's second law
...(I)
Using formula of friction force
....(II)
Put the value of F in the equation (II) from equation (I)
....(III)
![a = \mu g](https://tex.z-dn.net/?f=a%20%3D%20%5Cmu%20g)
Put the value in the equation (III)
![a=0.24\times9.8](https://tex.z-dn.net/?f=a%3D0.24%5Ctimes9.8)
![a=2.352\ m/s^2](https://tex.z-dn.net/?f=a%3D2.352%5C%20m%2Fs%5E2)
We need to calculate the distance,
Using equation of motion
![s = ut+\dfrac{1}{2}at^2](https://tex.z-dn.net/?f=s%20%3D%20ut%2B%5Cdfrac%7B1%7D%7B2%7Dat%5E2)
![s=0+\dfrac{1}{2}2.352\times(3.0)^2](https://tex.z-dn.net/?f=s%3D0%2B%5Cdfrac%7B1%7D%7B2%7D2.352%5Ctimes%283.0%29%5E2)
![s=10.584\ m\ approx\ 11\ m](https://tex.z-dn.net/?f=s%3D10.584%5C%20m%5C%20approx%5C%2011%5C%20m)
Hence, The distance is 11 m.