Answer:
It remains the same
Explanation:
It remains the same. This is because the number of protons doesn't change and the number of protons determines the atomic number.
Answer:
Part a)

Part b)

Since the distance of other building is 15 m so YES it can make it to other building
Part c)

direction of velocity is given as
![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Explanation:
Part a)
acceleration due to gravity on this planet is 3/4 times the gravity on earth
So the acceleration due to gravity on this new planet is given as


now the vertical displacement covered by the canister is given as

now by kinematics we have



Part b)
Horizontal speed of the canister is given as

now the distance moved by it



Since the distance of other building is 15 m so YES it can make it to other building
Part c)
Final velocity in X direction will remains the same

final velocity in Y direction



now magnitude of velocity is given as



direction of velocity is given as


![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Answer:
s is distance so it's dimensions become L.
Nd other side we have ut+1\2at^2.
as 1\2 is a constant it will have dimensions and apply the dimensions to other quantities.
on solving u will get L there also i,e ur LHS = RHS.
thus the equation is dimensionally consistent.
Explanation:
Answer:
The angle it subtend on the retina is
Explanation:
From the question we are told that
The length of the warbler is 
The distance from the binoculars is 
The magnification of the binoculars is 
Without the 8 X binoculars the angle made with the angular size of the object is mathematically represented as



Now magnification can be represented mathematically as

Where
is the angle the image of the warbler subtend on your retina when the binoculars i.e the binoculars zoom.
So

=> 

Generally the conversion to degrees can be mathematically evaluated as

Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers