Half the potential difference of the the1-µF
A circuit must have a capacitance of 2 F across a 1 kV potential difference for an electrical technician. He has access to a sizable number of 1F capacitors, each of which can sustain a potential difference of no more than 400 V. Please suggest a configuration that uses the fewest capacitors possible.
The 2-mu F capacitor has the following characteristics: none of the aforementioned; half the charge of the 1-mu F capacitor; twice the charge of the 1-mu F capacitor; and half the potential difference of the 1-mu F capacitor.
Q = C V, C = Capacitance of the capacitor gives the charge stored by a capacitor with an applied voltage V. V is the applied voltage.
Learn more about capacitor brainly.com/question/21851402
#SPJ4
C. Sugars dissolved in water
<span>there is no horizontal displacement if he went straight up
straight up means vertical, so his vertical displacment is 20 m</span>
Answer:
The maximum velocity is 1.58 m/s.
Explanation:
A spring pendulum with stiffness k = 100N/m is attached to an object of mass m = 0.1kg, pulls the object out of the equilibrium position by a distance of 5cm, and then lets go of the hand for the oscillating object. Calculate the achievable vmax.
Spring constant, K = 100 N/m
mass, m = 0.1 kg
Amplitude, A = 5 cm = 0.05 m
Let the angular frequency is w.

The maximum velocity is

Answer:

Explanation:
Velocity can be found using the following formula:

where p is the momentum and m is the mass.
The woman has a mass of 55 kilograms and a momentum of 200 kilogram meters per second.

Substitute the values into the formula.

Divide. Note that the kilograms, or kg, will cancel each other out.


The woman's velocity is 3.63636364 meters per second.