Answer:
No the gravity of the moon pulls the water making high tide
Explanation:
Answer:
c. The steady-state value of the current depends on the resistance of the resistor.
Explanation:
Since all the components are connected in series, when the switch is at first open, current will not flow round the circuit. As current needs to flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery.
But the moment the switch is closed, at the initial time t = 0, the current flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery. It then begins to increase at a rate that depends upon the value of the inductance of the inductor.
|Acceleration| = (change in speed) / (time for the change).
Change in speed = (6 mi/hr - 25 mi/hr) = -19 mi/hr
Time for the change = 10 sec
|Acceleration| = (-19 mi/hr) / (10 sec) = -1.9 mile per hour per second
Admittedly, that's a rather weird unit.
Other units, perhaps more comfortable ones, are:
-6,840 mi/hr²
-2.79 feet/sec²
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds) .
Notice that the ball is only accelerating while it's in contact with the racket.
The instant the ball loses contact with the racket, it stops accelerating, and
sails off in a straight line at whatever speed it had when it left the strings.
Answer:
Explanation:
Intensity of sound = sound energy emitted by source / 4 π d² , where d is distance of the source .
A )
Intensity of sound at 1 m distance = 60 /4 π d²
d = 1 m
Intensity of sound at 1 m distance = 60 /(4 π 1²)
= 4.78 W m⁻² s⁻¹
B )
Intensity of sound at 1.5 m distance = 60 /4 π d²
d = 1.5 m
Intensity of sound at 1 m distance = 60 /(4 π 1.5²)
= 2.12 W m⁻² s⁻¹
C )
Intensity of sound due to 4 speakers at 1.5 m distance = 4 x 60 /4 π d²
d = 1.5 m
= 4 x 60 /(4 π 1.5²)
= 8.48 W m⁻² s⁻¹
D )
Intensity of sound due to .06 W speaker must be 10⁻¹² W s ⁻² . Let the distance be d .
.06 /4 π d² = 10⁻¹²
d² = .06 /4 π 10⁻¹²
d = 6.9 x 10⁴ m .