The initial momentum of the system can be expressed as,

The final momentum of the system can be given as,

According to conservation of momentum,

Plug in the known expressions,

Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.
Plug in the known values,

Thus, the final velocity of second mass is 2.99 m/s.
Answer:
The minimum coefficient of friction is 0.27.
Explanation:
To solve this problem, start with identifying the forces at play here. First, the bug staying on the rotating turntable will be subject to the centripetal force constantly acting toward the center of the turntable (in absence of which the bug would leave the turntable in a straight line). Second, there is the force of friction due to which the bug can stick to the table. The friction force acts as an intermediary to enable the centripetal acceleration to happen.
Centripetal force is written as

with v the linear velocity and r the radius of the turntable. We are not given v, but we can write it as

with ω denoting the angular velocity, which we are given. With that, the above becomes:

Now, the friction force must be at least as much (in magnitude) as Fc. The coefficient (static) of friction μ must be large enough. How large?

Let's plug in the numbers. The angular velocity should be in radians per second. We are given rev/min, which can be easily transformed by a factor 2pi/60:

and so 45 rev/min = 4.71 rad/s.

A static coefficient of friction of at least be 0.27 must be present for the bug to continue enjoying the ride on the turntable.
Answer: i think the answer is 20.0s
Explanation:
Answer:
<h3>The answer is 3 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>3 kg</h3>
Hope this helps you
To solve this problem we will use the work theorem, for which we have that the Force applied on the object multiplied by the distance traveled by it, is equivalent to the total work. From the measurements obtained we have that the width and the top are 14ft and 7ft respectively. In turn, the bottom of the tank is 15ft. Although the weight of the liquid is not given we will assume this value of
(Whose variable will remain modifiable until the end of the equations subsequently presented to facilitate the change of this, in case be different). Now the general expression for the integral of work would be given as

Basically under this expression we are making it difficult for the weight of the liquid multiplied by the area (Top and widht) under the integral of the liquid path to be equivalent to the total work done, then replacing

![W = (14*7*62)\big [15y-\frac{y^2}{2}\big ]^{15}_0](https://tex.z-dn.net/?f=W%20%3D%20%2814%2A7%2A62%29%5Cbig%20%5B15y-%5Cfrac%7By%5E2%7D%7B2%7D%5Cbig%20%5D%5E%7B15%7D_0)
![W = (14*7*62)[15(15)-\frac{(15)^2}{2}]](https://tex.z-dn.net/?f=W%20%3D%20%2814%2A7%2A62%29%5B15%2815%29-%5Cfrac%7B%2815%29%5E2%7D%7B2%7D%5D)

Therefore the total work in the system is 