Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
Answer: 1010.92 m/s
Explanation:
According to Newton's law of universal gravitation:
(1)
Where:
is the gravitational force between Earth and Moon
is the Gravitational Constant
is the mass of the Earth
is the mass of the Moon
is the distance between the Earth and Moon
Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to
:
(2)
Where
is the centripetal acceleration given by:
(3)
Being
the orbital velocity of the moon
Making (1)=(2):
(4)
Simplifying:
(5)
Making (5)=(3):
(6)
Finding
:
(7)
(8)
Finally:
1 gallon has 0.133681 cubic feet
Definition formula for momentum: P = mv
So P(A) = 0.45 * 50 = 22.5 kgm/s
P(B) = 0.45 * 80 = 36 kgm/s
P(C) = 0.45 * 25 = 11.25 kgm/s
B has the greatest momentum
<span>Answer:
So this involves right triangles. The height is always 100. Let the horizontal be x and the length of string be z.
So we have x2 + 1002 = z2. Now take its derivative in terms of time to get
2x(dx/dt) = 2z(dz/dt)
So at your specific moment z = 200, x = 100âš3 and dx/dt = +8
substituting, that makes dz/dt = 800âš3 / 200 or 4âš3.
Part 2
sin a = 100/z = 100 z-1 . Now take the derivative in terms of t to get
cos a (da./dt) = -100/ z2 (dz/dt)
So we know z = 200, which makes this a 30-60-90 triangle, therefore a=30 degrees or π/6 radians.
Substitute to get
cos (Ď€/6)(da/dt) = (-100/ 40000)(4âš3)
âš3 / 2 (da/dt) = -âš3 / 100
da/dt = -1/50 radians</span>