pretty sure it's both are physical changes.
<u>Answer:</u> The sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 5730 years
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ? yr
= initial amount of the sample = 100 grams
[A] = amount left after decay process = (100 - 25) = 75 grams
Putting values in above equation, we get:

Hence, the sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
Answer:
5.physical change
6.chemical change
7.physical change
8.conservation of mass
9.thermal energy
10.physical change
I honeslty dont know if this is right
explanation:
Reactivity trends of halogen:
1) Melting point and boiling points increased down the
group
2) Colour becomes darker.
E.g. Fluorine (pale yellow)
Chlorine (yellowish-green)
Bromine (reddish-brown)
Iodine (purplish-black)
Astatine (black)
3) The reactivity decreases down the group.
Reactivity:
F > Cl > Br > I > At