Answer:
Explanation:
F = ma and
We have F, we have m, but in order to solve for v, we need a.
30.0 = 3.00a so
a = 10.0 m/s/s. Plug that in for a in the second equation and solve for v:
so
v = 10.0(3.00) so
v = 30.0 m/s
Iodine-131 has a half life of 8 days, so half of it is gone every 8 days.
10 grams of iodine-131 is left for 24 days.
At 8 days: 10/2=5 grams left
At 16 days: 5/2=2.5 grams left
At 24 days: 2.5/2=1.25 grams left.
**
Your mistake is that you stopped at 16 days.
Answer:
A 5
Explanation:
The wave with the least amount of wavelength will have the greatest amount of energy.
Wavelength and energy shares an inverse relationship;
E = h f = 
From this equation, we see that the higher the energy of a wave, the lesser its wavelength.
- Choice A from the options has the least wavelength.
- Wavelength is the distance between two successive crests of a wave.
This is why we see that in the electromagnetic spectrum, radio waves have the least energy because they have the longest wavelength.
In solids, particles or atom are very closely arranged compared to gasses. When these particles are arranged in such proximity, vibrations from sound are very easily transmitted from one particle to another in the solid. Hence, the sound vibrations can travel through the solid medium more quickly than through a gas medium.
Speed of sound also depends on its frequency and the wavelength.
Answer: The wave can flip upside down.
Reflection is the bending of a wave when it cannot pass through. For example, plain mirrors which are flat, a ray of light hits the mirror and is reflected from the mirror since it cannot pass through
When reflection occurs the speed and frequency of the wave does not change but the wave is flipped upside down.
The speed does not change because speed is affected by the change in medium the frequency also remains the same since the energy of the wave does not change.