1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
2 years ago
6

What is released when an excited electron returns to a lower energy state?

Physics
2 answers:
Marysya12 [62]2 years ago
8 0

Answer:

A proton

Explanation:

oee [108]2 years ago
8 0

Answer:

D. Electromagnetic radiation

Explanation:

...

You might be interested in
An electric heater rated 600 w operates 6 hours per day find the cast to operate it for 30 days , at rs. 4.00 per unit​
djverab [1.8K]

Answer:

Rs. 432*10^3 (In kilowatts per hour)

I hope it will be useful.

3 0
3 years ago
If a 20 N object has been lifted 5 meters above the ground, how much gravitational potential energy does it have?
Andreyy89

The gravitational potential energy of the object is 100 J.

Gravitational potential energy stored in an object is the work done in raising the object to a height <em>h</em> against the gravitational force acting on it.

The gravitational force acting on a body is its weight mg, where m is its mass and g, the acceleration due to gravity.

Work done by a force is equal to the product of the force and the displacement made by the point of application of the force.

GPE = mgh

The weight of the object is given as 20 J and it is raised to a height of 5 m.

GPE =(mg)*h = (20 N)*(5m)=100 J

The gravitational potential energy of the object is 100 J.

5 0
2 years ago
Read 2 more answers
Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudina
Alecsey [184]

(a) 23.4

The fiber-to-matrix load ratio is given by

\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}

where

E_f = 131 GPa is the fiber elasticity module

E_m = 2.4 GPa is the matrix elasticity module

V_f=0.3 is the fraction of volume of the fiber

V_m=0.7 is the fraction of volume of the matrix

Substituting,

\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4 (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

We can rewrite (1) as

F_m = \frac{F_f}{23.4}

And inserting this into (2):

F=F_f + \frac{F_f}{23.4}

Solving the equation, we find the actual load carried by the fiber phase:

F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

Using

F = 46500 N

F_f = 44594 N

We can immediately find the actual load carried by the matrix phase:

F_m = F-F_f = 46,500 N - 44,594 N=1,906 N

(d) 437 MPa

The cross-sectional area of the fiber phase is

A_f = A V_f

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_f=0.3, we have

A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2

And the magnitude of the stress on the fiber phase is

\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

A_m = A V_m

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_m=0.7, we have

A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2

And the magnitude of the stress on the matrix phase is

\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa

(f) 3.34\cdot 10^{-3}

The longitudinal modulus of elasticity is

E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa

While the total stress experienced by the composite is

\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa

So, the strain experienced by the composite is

\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}

3 0
3 years ago
A bowling ball accidentally falls out of the cargo bay of an airliner as it flies along in a horizontal direction. As seen from
valina [46]

The path the bowling ball would most closely follow after leaving the airplane is horizontal direction.

<h3>Path of the bowling ball</h3>

Based on the law of inertia, which is the reluctance of an object to stop moving once in motion or start moving when it is at rest.

The bowling ball will maintain the path of the airline in the first few seconds of fall, after which it will change its path to vertical direction.

Thus, the path the bowling ball would most closely follow after leaving the airplane is horizontal direction.

Learn more about horizontal direction here: brainly.com/question/2534565

#SPJ1

3 0
2 years ago
Which possesses the most gravitational potential energy?
ser-zykov [4K]

Answer:

uxjdkddoedlkfkkllllllllo

8 0
2 years ago
Read 2 more answers
Other questions:
  • Use what you learned in the passage to
    8·2 answers
  • List the ocean floor features that are formed by the movement of tectonic plates
    12·1 answer
  • A particular interaction force does work wint inside a system. the potential energy of the interaction is u. which equation rela
    14·1 answer
  • A projectile thrown from the ground reached a horizontal displacement of 50 [m] and a maximum height of 100 [m]. What are the ma
    13·1 answer
  • What is produced when calcium reacts with fluorine in a synthesis reaction
    10·2 answers
  • Gravity anything with mass as gravity we know the earth has gravity because you and I are standing on earth and not floating off
    7·1 answer
  • Fluorine and chlorine molecules are blamed for<br>​
    6·1 answer
  • A sheet of aluminum (al) foil has a total area of 1.000 ft2 and a mass of 3.716 g. what is the thickness of the foil in millimet
    9·1 answer
  • What is the maximum speed with which a 1200-kg car can round a turn of radius 94.0 m on a flat road if the coefficient of static
    8·1 answer
  • Which is the wavelength of a wave that travels at a speed of 3.0 × 10^8 m/s and has a frequency of 1.5 × 10^16 Hz?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!