Answer:
0.104 M
Explanation:
<em>A saline solution contains 0.770 g of NaCl (molar mass = 58.55 g/mol) in 133 mL.</em>
<em />
The molar mass of the solute (NaCl) is 58.55 g/mol. The moles corresponding to 0.770 g are:
0.770 g × (1 mol/55.85 g) = 0.0138 mol
The volume of solution is 133 mL. In liters,
133 mL × (1 L/1000 mL) = 0.133 L
The molarity of NaCl is:
M = moles of solute / liters of solution
M = 0.0138 mol / 0.133 L
M = 0.104 M
Explanation:
<em>Potas</em><em>sium</em><em> </em><em>has</em><em> </em><em>an</em><em> </em><em>atomi</em><em>c</em><em> </em><em>radii</em><em> </em><em>that</em><em> </em><em>is</em><em> </em><em>greate</em><em>r</em><em> </em><em>t</em><em>han</em><em> </em><em>t</em><em>hat</em><em> </em><em>of</em><em> </em><em>lithiu</em><em>m</em><em> </em><em>th</em><em>at</em><em> is</em><em> </em><em>why</em><em> </em><em>pot</em><em>assium</em><em> </em><em>is</em><em> </em><em>more</em><em> </em><em>reactiv</em><em>e</em><em> </em><em>than</em><em> </em><em>lithi</em><em>um</em><em>.</em>
<em>tHx</em><em> </em><em>fOr</em><em> pOinTs</em><em>.</em><em>.</em><em>.</em>
While there is no such thing as 100 percent safe, having nuclear energy is much safer than you think. It's thousands of times safer than conventional coal and other fossil-fuel-derived energy, not to mention the specter of environmental disaster from continued use of carbon-based energy sources.
Answer : Option 1) The true statement is each carbon-oxygen bond is somewhere between a single and double bond and the actual structure of format is an average of the two resonance forms.
Explanation : The actual structure of formate is found to be a resonance hybrid of the two resonating forms. The actual structure for formate do not switches back and forth between two resonance forms.
The O atom in the formate molecule with one bond and three lone pairs, in the resonance form left with reference to the attached image, gets changed into O atom with two bonds and two lone pairs.
Again, the O atom with two bonds and two lone pairs on the resonance form left, changed into O atom with one bond and three lone pairs. It concludes that each carbon-oxygen bond is neither a single bond nor a double bond; each carbon-oxygen bond is somewhere between a single and double bond.
Also, it is seen that each oxygen atom does not have neither a double bond nor a single bond 50% of the time.