1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
10

X-rays with an energy of 400 keV undergo Compton scattering with a target. If the scattered X-rays are detected at \theta = 30^{

\circ}θ=30 ​∘ ​​ relative to the incident X-rays, what is the energy of the recoiling electron? [Assume that energy is conserved in this interaction]
Physics
1 answer:
dedylja [7]3 years ago
5 0
<h2>Answer: 37.937 keV</h2>

Explanation:

<u>Photons have momentum</u>, this was proved by he American physicist Arthur H. Compton after his experiments related to the <u>scattering of photons from electrons</u> (Compton Effect or Compton Shift). In addition, energy and momentum are conserved in the process.

In this context, the Compton Shift \Delta \lambda in wavelength when the photons are scattered is given by the following equation:

\Delta \lambda=\lambda' - \lambda_{o}=\lambda_{c}(1-cos\theta)     (1)

Where:

\lambda_{c}=2.43(10)^{-12} m is a constant whose value is given by \frac{h}{m_{e}.c}, being h=4.136(10)^{-15}eV.s the Planck constant, m_{e} the mass of the electron and c=3(10)^{8}m/s the speed of light in vacuum.

\theta=30\° the angle between incident phhoton and the scatered photon.

We are told the scattered X-rays (photons) are detected at 30\°:

\Delta \lambda=\lambda' - \lambda_{o}=\lambda_{c}(1-cos(30\°))   (2)

\Delta \lambda=\lambda' - \lambda_{o}=3.2502(10)^{-13}m   (3)

Now, the initial energy E_{o}=400keV=400(10)^{3}eV of the photon is given by:

 E_{o}=\frac{h.c}{\lambda_{o}}    (4)

From this equation (4) we can find the value of \lambda_{o}:

\lambda_{o}=\frac{h.c}{E_{o}}    (5)

\lambda_{o}=\frac{(4.136(10)^{-15}eV.s)(3(10)^{8}m/s)}{400(10)^{3}eV}    

\lambda_{o}=3.102(10)^{-12}m    (6)

Knowing the value of \Delta \lambda and \lambda_{o}, let's find \lambda':

\Delta \lambda=\lambda' - \lambda_{o}

Then:

\lambda'=\Delta \lambda+\lambda_{o}  (7)

\lambda'=3.2502(10)^{-13}m+3.102(10)^{-12}m  

\lambda'=3.427(10)^{-12}m  (8)

Knowing the wavelength of the scattered photon \lambda'  , we can find its energy E' :

E'=\frac{h.c}{\lambda'}    (9)

E'=\frac{(4.136(10)^{-15}eV.s)(3(10)^{8}m/s)}{3.427(10)^{-12}m}    

E'=362.063keV    (10) This is the energy of the scattered photon

So, if we want to know the energy of the recoiling electron E_{e}, we have to calculate all the energy lost by the photon, which is:

E_{e}=E_{o}-E'  (11)

E_{e}=400keV-362.063keV  

Finally we obtain the energy of the recoiling electron:

E_{e}=37.937keV  

You might be interested in
When is the force on a current-carrying wire in a magnetic field at its strongest?
Hitman42 [59]

The forces on a current-carrying wire in a magnetic field are at their strongest when the current is at a 90-degree angle to the field. Option D is correct.

<h3>What is a magnetic field?</h3>

It is the type of field where the magnetic force is obtained. The magnetic force is obtained by the field felt around a moving electric charge.

The complete question is;

"When is the force on a current-carrying wire in a magnetic field at its strongest?

-when the current is at a 0-degree angle to the field

-when the current is at a 30-degree angle to the field

-when the current is at a 45-degree angle to the field

-when the current is at a 90-degree angle to the field"

The magnetic force is found as;

F=BILSINΘ

Where,

Magnetic Field, B

Length of the wire, L

The angle between field and current, Θ

When Θ=90°

The value of the magnetic force is;

F=BIL

When the current is flowing at a 90-degree angle to the magnetic field, the forces acting on a wire carrying a current are the strongest.

Hence, option D is correct.

To learn more about the magnetic field, refer to the link;

brainly.com/question/19542022

#SPJ1

4 0
2 years ago
A Honda Civic travels in a straight line along a road. Its distance x from a stop sign is given as a function of time t by the e
andrew-mc [135]
Average velocity = (x( 2.08 ) - x ( 0 )) / ( 2.08 s - 0 s )
x ( 2.08 ) = 1.42 * 2.08² - 0.05 * 2.08³ =
= 1.42 * 4.3264 - 0.443456 = 6.143484 - 0.443456 ≈ 5.7 m
v = ( 5.7 m - 0 m) / (2.08 s - 0 s ) = 5.7 / 2.08 m/s = 27.4 m/s
3 0
3 years ago
Congugar verbos en primera persona del singular
stira [4]
This is Spanish !!!!
3 0
3 years ago
Suppose your local apparent solar time is 11 am, and you have a clock that says it is noon in Greenwich. What is your longitude
jeyben [28]

The longitude based on the time difference is 15 degrees.

<h3>Longitude of complete rotation of the Earth</h3>

The longitude of a complete rotation of the earth in a 24 hours is calculated  as follows;

= \frac{360^0}{24} = 15^0 \ of \ longitude

<h3>Time difference</h3>

The time difference between the local apparent solar time and the Greenwich time is calculated as follows;

t = 12 pm \ - \ 11 am\\\\t = 1 \ hour

Since it is one hour time difference, the longitude is 15 degrees.

Learn more about Earth longitude here: brainly.com/question/1939015

5 0
2 years ago
What are the wavelength ranges for the following? (a) the AM radio band (540–1600 kHz) maximum wavelength m minimum wavelength m
Pie

Answer:

Explanation:

a ) AM radio band (540–1600 kHz)

frequency = 540 kHz = 540 x 10³ Hz

wave length = velocity of light / frequency

= 3 x 10⁸ / 540 x 10³

= 555.55 m

frequency = 1600 kHz = 1600 x 10³ Hz

wave length = velocity of light / frequency

= 3 x 10⁸ / 1600 x 10³

= 187.5  m

maximum wavelength  =   555.55 m

minimum wavelength =  187.5 m

b )

AM radio band (88 - 108 MHz)

frequency = 88 MHz = 88 x 10⁶ Hz

wave length = velocity of light / frequency

= 3 x 10⁸ / 88 x 10⁶

= 3.41 m

frequency = 108 MHz = 108 x 10⁶ Hz

wave length = velocity of light / frequency

= 3 x 10⁸ / 108 x 10⁶

= 2.78  m

maximum wavelength  =   3.41 m

minimum wavelength =  2.78 m

3 0
3 years ago
Other questions:
  • If iron were to bound with oxygen, predict the formula for each oxidation number of iron.
    13·1 answer
  • When does DNA replication occur?
    13·2 answers
  • 15. A volleyball player who weighs 650 Newtons jumps 0.500 meters vertically off the floor. What is her kinetic energy just befo
    14·1 answer
  • A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt2+qt, with p = 0.36
    9·1 answer
  • Can I get some help please?
    12·1 answer
  • Based on the law of conservation of energy, how can we reasonably improve a machine’s ability to do work?
    13·2 answers
  • Which missing item would complete this alpha decay reaction ? ________—&gt; 228/88Ra + 4/2He A.224/96 Rn B. 232/90 Th C. 230/92
    13·1 answer
  • Which of the following has the greatest momentum?
    6·1 answer
  • How are traits influenced by the environment? (No links)
    15·1 answer
  • Two closed organ pipe gives 4 beats when sounded together at 5°C. Calculate the number of beats in 35°C​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!