There's a force that acts on the particulate matter that keeps it together. This proves that attraction varies from particles of one substance to another.
According to the equation of molarity:
Molarity= no.of moles / volume per liter of Solution
when we have the molarity=0.58 M and the beaker at 150mL so V (per liter) = 150mL/1000 = 0.150 L
by substitution:
∴ No.of moles = Molarity * Volume of solution (per liter)
= 0.58 * 0.150 = 0.087 Moles
The specific heat of metal is c = 3.433 J/g*⁰C.
<h3>Further explanation</h3>
Given
mass of metal = 68.6 g
t metal = 100 °C
mass water = 84 g
t water = 20 °C
final temperature = 52.1 °C
Required
The specific heat
Solution
Heat can be formulated :
Q = m.c.Δt
Q absorbed by water = Q released by metal
84 x 4.184 x (52.1-20)=68.6 x c x (100-52.1)
11281.738=3285.94 x c
c = 3.433 J/g*⁰C.
Answer:
The forward reaction is an exothermic reaction.
Explanation:
An exothermic reaction is one in which energy is released, usually in the form of heat hence the enthalpy of the reaction is negative. When a reaction exothermic, the energy of the reactants is greater than the energy of the products hence the excess energy is given out as heat. The reactants lie at a higher energy level in the reaction profile compared to the products.
When we look at the reaction given in the question, NO(g) ⇌ 12N2(g) + 12O2(g) ΔH = −90.3 kJ , we can easily see from the thermochemical reaction that the forward reaction is exothermic, energy is released by the reaction system as evidenced by the negative enthalpy of reaction.
When salt is added to ice , it comes into contact with the thin layer of water on the surface of the melting ice. ... This salt water has a lower freezing point, so the temperature of the ice bath can get even colder, thus freezing the ice cream more quickly.