Answer : The correct option is, (e) eg = trigonal planar, mg = trigonal planar
Explanation :
Formula used :
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
The given molecule is, 
![\text{Number of electron pair}=\frac{1}{2}\times [4+3-1]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5B4%2B3-1%5D%3D3)
That means,
Bond pair = 3
Lone pair = 0
The number of electron pair are 3 that means the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the electron geometry (eg) and molecular geometry (mg) of
is, trigonal planar and trigonal planar respectively.
Answer:
Explanation:
Its just dangerous stuff can go in the air and harm others
Answer:
uh
Explanation:
I think its like radar or something like that- im not too sure sorry
Answer: Please see answer below
Explanation:
Mecury vapor lamp is better to use than Sodium vapor light, this is because because
---The Filaments of the lamp in sodium emit fast moving electrons, which causes valence electrons of the sodium atoms to excite to higher energy levels which when electrons after being excited, relax by emitting yellow light which concentrates on the the monochromatic bright yellow part of the visible spectrum which is about 580-590 or about (589nm) which will fall incident on the calibrations making it difficult to see
While
In Mercury vapor lamp, The emitted electrons from the filaments, after having been excited by high voltage, hit the mercury atoms but the excited electrons of mercury atoms relax and emits an ultraviolet uv invisible lights falling on the mecury vapour lamp to produce white light covering a wide range of (380-780 nm) which is visible that is why it is used for calibrations purposes in lightening applications.
The value of log₂(x/4) is 22. Using the properties of the logarithm, the required value is calculated.
<h3>What are the required properties of the logarithm?</h3>
The required logarithm properties are
logₐx = n ⇒ aⁿ = x; and logₐ(xⁿ) = n logₐ(x);
Where a is the base of the logarithm.
<h3>Calculation:</h3>
It is given that,
log₄(x) = 12;
On applying the property logₐx = n ⇒ aⁿ = x; here a = 4;
So,
log₄(x) = 12 ⇒ 4¹² = x
⇒ x = (2²)¹² = 2²⁴
Then, calculating log₂(x/4):
log₂(x/4) = log₂(2²⁴/4)
= log₂(2²⁴/2²)
= log₂(2²⁴ ⁻ ²)
= log₂(2²²)
On applying the property logₐ(xⁿ) = n logₐ(x);
log₂(x/4) = 22 log₂2
We know that logₐa = 1;
So,
log₂(x/4) = 22(1)
∴ log₂(x/4) = 22.
Learn more about the properties of logarithm here:
brainly.com/question/12049968
#SPJ9