1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
15

SP: Calculate the moment

Physics
1 answer:
ipn [44]3 years ago
6 0

Answer:

Moment of the force is 20 N-m.

Explanation:

Given:

Force exerted by the person is, F=80\ N

Distance of application of force from the point about which moment is needed is, d=25\ cm=\frac{25}{100}\ m=0.25\ m

Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.

Therefore, the moment of the force about the end of the claw hammer is given as:

M=F\times d\\\\M=(80\ N)(0.25\ m)\\\\M=20\textrm{ N-m}

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.

You might be interested in
In addition to possibly releasing harmful chemicals in the environment, mining is considered
ddd [48]
In addition to possibly releasing harmful chemicals in the environment, mining is considered B. The most dangerous job in the United States.
4 0
3 years ago
An airliner arrives at the terminal, and its engines are shut off. The rotor of one of the engines has an initial clockwise angu
Ilia_Sergeevich [38]

(a) 1200 rad/s

The angular acceleration of the rotor is given by:

\alpha = \frac{\omega_f - \omega_i}{t}

where we have

\alpha = -80.0 rad/s^2 is the angular acceleration (negative since the rotor is slowing down)

\omega_f is the final angular speed

\omega_i = 2000 rad/s is the initial angular speed

t = 10.0 s is the time interval

Solving for \omega_f, we find the final angular speed after 10.0 s:

\omega_f = \omega_i + \alpha t = 2000 rad/s + (-80.0 rad/s^2)(10.0 s)=1200 rad/s

(b) 25 s

We can calculate the time needed for the rotor to come to rest, by using again the same formula:

\alpha = \frac{\omega_f - \omega_i}{t}

If we re-arrange it for t, we get:

t = \frac{\omega_f - \omega_i}{\alpha}

where here we have

\omega_i = 2000 rad/s is the initial angular speed

\omega_f=0 is the final angular speed

\alpha = -80.0 rad/s^2 is the angular acceleration

Solving the equation,

t=\frac{0-2000 rad/s}{-80.0 rad/s^2}=25 s

6 0
3 years ago
Which of the following would have the most momentum?
Anarel [89]
I think it should be D as momentum is the product of mass and velocity...
4 0
3 years ago
A car travels around a level, circular track that is 750m across. What coefficient of friction is required to ensure the car can
Crank

The coefficient of friction must be 0.196

Explanation:

For a car moving on a circular track, the frictional force provides the centripetal force needed to keep the car in circular motion. Therefore, we can write:

\mu mg = m\frac{v^2}{r}

where the term on the left is the frictional force acting between the tires of the car and the road, while the term on the right is the centripetal force. The various terms are:

\mu is the coefficient of friction between the tires and the road

m is the mass of the car

g=9.8 m/s^2 is the acceleration of gravity

v is the speed of the car

r is the radius of the curve

In this problem,

r = 750 m is the radius

v=85 mph \cdot \frac{1609}{3600}=38.0 m/s is the speed

And solving for \mu, we find the coefficient of friction required to keep the car in circular motion:

\mu = \frac{v^2}{rg}=\frac{38.0^2}{(750)(9.8)}=0.196

Learn more about circular motion:

brainly.com/question/2562955  

brainly.com/question/6372960  

#LearnwithBrainly

8 0
3 years ago
an object has a momentum of 250 kg m/s what would be the momentum of an object that has half of the mass and going at the same v
Romashka-Z-Leto [24]

The momentum of the second object is 125 kg m/s

Explanation:

The momentum of an object is given by

p=mv

where

m is the mass of the object

v is its velocity

For the object in this problem,

p = 250 kg m/s

And its mass is m and its velocity is v.

The second object has a mass of m' = \frac{m}{2} and same velocity v, so its momentum is

p'=m'v = (\frac{m}{2})v=\frac{1}{2}(mv)=\frac{1}{2}p

So, the second object has a momentum that is half of the momentum of the first object, therefore it is:

p'=\frac{1}{2}(250)=125 kg m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

3 0
3 years ago
Other questions:
  • A long, straight solenoid has 800 turns. when the current in the solenoid is 2.90 a, the average flux through each turn of the s
    9·1 answer
  • How can you make the moon go around in a bigger circle
    5·2 answers
  • A roller coaster moves 200 ft horizontally, then rises 135 ft at an angle of 30.0° above the horizontal. Next, it travels 135 f
    13·1 answer
  • Which of the following statements is true?
    9·2 answers
  • _______________have a negative charge and are located on the outside of the nucleus.
    6·1 answer
  • 1 A 75-g ball is projected from a height of 1.6 m with a horizontal velocity of 2 m/s and bounces from a 400-g smooth plate supp
    14·1 answer
  • Which of the following statements is true vibrations ?
    5·1 answer
  • A boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s .
    8·1 answer
  • Which describes who will record their measurements in joules?
    5·2 answers
  • Calculate the size of the magnetic field 20 m below a high voltage power line. The line carries 450 MW at a voltage of 300,000 V
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!