Dang dude you are a soldier! Good job
The Oort cloud extends to the gravitational limits of the solar system would comets come from.
<h3>What is oort cloud?</h3>
It is a hypothetical idea of a cloud of mostly frozen planetesimals that would orbit the Sun at distances between 2,000 and 200,000 AU.
The Oort cloud reaches the solar system's outer gravitational boundaries, where comets originate.
Hence cloud extending to the gravitational limits of the solar system will be oorto cloud.
To learn more about the oort cloud refer;
brainly.com/question/23368033
#SPJ1
So the equation for angular velocity is
Omega = 2(3.14)/T
Where T is the total period in which the cylinder completes one revolution.
In order to find T, the tangential velocity is
V = 2(3.14)r/T
When calculated, I got V = 3.14
When you enter that into the angular velocity equation, you should get 2m/s
The complete cycle of phases lasts 29.531 days.
From New Moon to Full Moon is half of that . . . 14.765 days,
which is very close to 2 weeks.
Answer:
103.5 meters
Explanation:
Given that a stunt person has to jump from a bridge and land on a boat in the water 22.5 m below. The boat is cruising at a constant velocity of 48.3 m/s towards the bridge. The stunt person will jump up at 6.45 m/s as they leave the bridge.
The time the person will jump to a certain spot under the bridge can be calculated by using the formula below:
h = Ut + 1/2gt^2
since the person will fall under gravity, g = 9.8 m/s^2
Also, let assume that the person jump from rest, then, U = 0
Substitute h, U and g into the formula above
22.5 = 1/2 * 9.8 * t^2
22.5 = 4.9t^2
22.5 = 4.9t^2
t^2 = 22.5/4.9
t^2 = 4.59
t = 
t = 2.143 seconds
From definition of speed,
speed = distance /time
Given that the boat is cruising at a constant velocity of 48.3 m/s towards the bridge, substitute the speed and the time to get the distance.
48.3 = distance / 2.143
distance = 48.3 * 2.143
distance = 103.5 m
Therefore, the boat should be 103.5m away from the bridge at the moment the stunt person jumps?