Answer:
after 2 seconds its velocity is -20 m/s. after 3 seconds its velocity is -30 m/s. after 10 seconds its velocity is -100 m/s.
Explanation:
This is my answer.
Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
The correct answer is: Option (A) 75 J
Explanation:
First, be careful with the units here. As you can see it is mentioned that there is a 50N box. It means that the weight (<em>mg</em>) of the box is given as the unit is <em>Newton</em>, not its mass (which is in kg).
As,
Potential-energy = mass * acceleration-due-to-gravity * height
PE = m*g*h --- (A)
In equation (A), mg is actually the weight of the box, which is given.
mg = 50N
h = height = 1.5m
Plug the values in equation (A):
PE = 50 * 1.5 = <em>75 J (Option A)</em>
energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear