Answer:
B. The current increases.
Explanation:
As we know that rate of flow of charge through the conductor is known as electric current
So we have

here we know that charge Q flowing through the conductor is constant while the time in which it passes through it is decreased
so we can say that the ratio of charge and time will increase
so here we have

So correct answer will be
B. The current increases.
Answer:
ac = 72 m/s²
Fc = 504 N
Explanation:
We can find the centripetal acceleration of the hammer by using the following formula:

where,
ac = centripetal acceleration = ?
v = constant speed = 12 m/s
r = radius = 2 m
Therefore,

<u>ac = 72 m/s²</u>
<u></u>
Now, the centripetal force applied by the athlete on the hammer will be:

<u>Fc = 504 N</u>
Answer: 200m/min
Explanation:
Divide 10000m by 160m/min, you will get the answer 62.5. You then subtract 12.5 from 62.5 to understand what you will need your answer for the other person’s speed will be. 10000m divided by 50min is 200m/min.
Answer:
1. a 
b 
c 
2. 
Explanation:
a). The work done by the tension is:




b). The work done potential of gravity




c). The work done by the normal force



2. The increase in thermal energy is:





Answer: B. If an object's velocity is changing,it's either experiencing acceleration or deceleration.
Acceleration is defined as the rate at which an object changes its velocity. This implies that if an object is changing it's velocity it is experiencing acceleration/ deceleration.
Acceleration is a vector quantity that has both a magnitude and time.
It is represented as
Acceleration= change in velocity/time.
The SI unit for acceleration is m/s^2